Skip to main content
Log in

Multi-scale simulation method for electroosmotic flows

  • Regular Article
  • Hybrid and Adaptive Coarse Graining Methods
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electroosmotic transport in micro-and nano- channels has important applications in biological and engineering systems but is difficult to model because nanoscale structure near surfaces impacts flow throughout the channel. We develop an efficient multi-scale simulation method that treats near-wall and bulk subdomains with different physical descriptions and couples them through a finite overlap region. Molecular dynamics is used in the near-wall subdomain where the ion density is inconsistent with continuum models and the discrete structure of solvent molecules is important. In the bulk region the solvent is treated as a continuum fluid described by the incompressible Navier-Stokes equations with thermal fluctuations. A discrete description of ions is retained because of the low density of ions and the long range of electrostatic interactions. A stochastic Euler-Lagrangian method is used to simulate the dynamics of these ions in the implicit continuum solvent. The overlap region allows free exchange of solvent and ions between the two subdomains. The hybrid approach is validated against full molecular dynamics simulations for different geometries and types of flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.A. Sharp, B. Honig, Annu. Rev. Biophys. Bio. 19, 301 (1990)

    Article  Google Scholar 

  2. B. Honig, A. Nicholls, Science 268, 1144 (1995)

    Article  ADS  Google Scholar 

  3. D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser, A. Manz, Science 261, 895 (1993)

    Article  ADS  Google Scholar 

  4. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 74, 2623 (2002)

    Article  Google Scholar 

  5. P.J. Kemery, J.K. Steehler, P.W. Bohn, Langmuir 14, 2884 (1998)

    Article  Google Scholar 

  6. T.-C. Kuo, L.A. Sloan, J.V. Sweedler, P.W. Bohn, Langmuir 17, 6298 (2001)

    Article  Google Scholar 

  7. T.-C. Kuo, D.M. Cannon, Y. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn, Anal. Chem. 75, 1861 (2003)

    Article  Google Scholar 

  8. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, Vol. 14 (CRC Press, 1997)

  9. K. Seiler, Z.H. Fan, K. Fluri, D.J. Harrison, Anal. Chem. 66, 3485 (1994)

    Article  Google Scholar 

  10. D.Q. Li. Electrokinetics in Microfluidics, Vol. 2 (Academic Press, 2004)

  11. R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, Vol. 2 (Academic Press, 2013)

  12. C. Yang, D. Li, Colloid Surf. A 143, 339 (1998)

    Article  Google Scholar 

  13. D. Li, Colloid Surf. A 195, 35 (2001)

    Article  ADS  Google Scholar 

  14. Y. Hu, C. Werner, D. Li, Anal. Chem. 75, 5747 (2003)

    Article  Google Scholar 

  15. Y. Hu, C. Werner, D.Q. Li, J. Colloid Interf. Sci. 280, 527 (2004)

    Article  Google Scholar 

  16. J. Wang, M. Wang, Z. Li, Mod. Phys. Lett. B 19, 1515 (2005)

    Article  ADS  Google Scholar 

  17. Z. Guo, T.S. Zhao, Y. Shi, J. Chem. Phys. 122, 144907 (2005)

    Article  ADS  Google Scholar 

  18. J. Wang, M. Wang, Z. Li, J. Colloid Interf. Sci. 296, 729 (2006)

    Article  Google Scholar 

  19. N.A. Patankar, H.H. Hu, Anal. Chem. 70, 1870 (1998)

    Article  Google Scholar 

  20. S.V. Ermakov, S.C. Jacobson, J. Michael Ramsey, Anal. Chem. 70, 4494 (1998)

    Article  Google Scholar 

  21. M.J. Mitchell, R. Qiao, N.R. Aluru, J. MEMS. 9, 435 (2000)

    Article  Google Scholar 

  22. R. Qiao, N.R. Aluru, J. Chem. Phys. 118, 4692 (2003)

    Article  ADS  Google Scholar 

  23. R. Qiao, N.R. Aluru, Colloid Surf. A 267, 103 (2005)

    Article  Google Scholar 

  24. R. Qiao, N.R. Aluru, Int. J. Multiscale Comput. Eng. 2 (2004)

  25. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E. 75, 021502 (2007)

    Article  ADS  Google Scholar 

  26. M. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E. 75, 021503 (2007)

    Article  ADS  Google Scholar 

  27. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)

    Article  ADS  Google Scholar 

  28. P. Wu, R. Qiao, Phys. Fluids 23, 072005 (2011)

    Article  ADS  Google Scholar 

  29. D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms to Applications, Vol. 1 (Academic Press, 2001)

  30. J.M. Haile, Comput. Phys. 7, 625 (1993)

    Article  ADS  Google Scholar 

  31. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, 1989)

  32. J. Koplik, J.R. Banavar, J.F. Willemsen, Phys. Fluids A: Fluid 1, 781 (1989)

    Article  ADS  Google Scholar 

  33. S.T. OConnell, P.A. Thompson, Phys. Rev. E 52, R5792 (1995)

    Article  ADS  Google Scholar 

  34. X.B. Nie, S.Y. Chen, M.O. Robbins, W. E, J. Fluid Mech. 500, 55 (2004)

    Article  ADS  Google Scholar 

  35. X. Nie, S. Chen, M.O. Robbins, Phys. Fluids 16, 3579 (2004)

    Article  ADS  Google Scholar 

  36. X. Nie, M.O. Robbins, S. Chen, Phys. Rev. Lett. 96, 134501 (2006)

    Article  ADS  Google Scholar 

  37. J. Liu, S. Chen, X. Nie, M.O. Robbins, J. Comput. Phys. 227, 279 (2007)

    Article  ADS  Google Scholar 

  38. J. Liu, S. Chen, X.B. Nie, M.O. Robbins, Commun. Comput. Phys. 4, 1279 (2008)

    ADS  Google Scholar 

  39. N.G. Hadjiconstantinou, J. Comput. Phys. 154, 245 (1999)

    Article  ADS  Google Scholar 

  40. N.G. Hadjiconstantinou, A.T. Patera, Int. J. Mod. Phys. C 8, 967 (1997)

    Article  ADS  Google Scholar 

  41. G. Wagner, E.G. Flekkøy, Phil. Trans. Roy. Soc. London A 362, 1655 (2004)

    Article  ADS  Google Scholar 

  42. G. Wagner, E. Flekkøy, J. Feder, T. Jøssang, Comput. Phys. Commun. 147, 670 (2002)

    Article  ADS  Google Scholar 

  43. G.D. Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. Lett. 97, 134501 (2006)

    Article  ADS  Google Scholar 

  44. R. Delgado-Buscalioni, E.G. Flekkøy, P.V. Coveney, Europhys. Lett. 69, 59 (2005)

    Article  Google Scholar 

  45. R. Delgado-Buscalioni, G.D. Fabritiis, Phys. Rev. E 76, 036709 (2007)

    Article  ADS  Google Scholar 

  46. R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 128, 114110 (2008)

    Article  ADS  Google Scholar 

  47. R. Delgado-Buscalioni, A. Dejoan, Phys. Rev. E 78, 046708 (2008)

    Article  ADS  Google Scholar 

  48. R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 131, 244107 (2009)

    Article  ADS  Google Scholar 

  49. E.G. Flekkøy, G. Wagner, J. Feder, Europhys. Lett. 52, 271 (2000)

    Article  ADS  Google Scholar 

  50. E.G. Flekkøy, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. E 72, 026703 (2005)

    Article  ADS  Google Scholar 

  51. E. Weinan, W. Ren, E. Vanden-Eijnden, J. Comput. Phys. 228, 5437 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Weinan, B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Commun. Comput. Phys. 2, 367 (2007)

    MathSciNet  Google Scholar 

  53. A. Donev, J.B. Bell, A.L. Garcia, B.J. Alder, Multiscale Model. Sim. 8, 871 (2010)

    Article  MathSciNet  Google Scholar 

  54. O.B. Usta, A.J.C. Ladd, J.E. Butler, J. Chem. Phys. 122(9), 094902 (2005)

    Article  ADS  Google Scholar 

  55. O.B. Usta, J.E. Butler, A.J.C. Ladd, Phys. Fluids 18, 031703 (2006)

    Article  ADS  Google Scholar 

  56. G. Giupponi, G.D. Fabritiis, P.V. Coveney, Int. J. Mod. Phys. C 18, 520 (2007)

    Article  ADS  Google Scholar 

  57. G. Giupponi, G.D. Fabritiis, P.V. Coveney, J. Chem. Phys. 126, 154903 (2007)

    Article  ADS  Google Scholar 

  58. R. Kapral, Adv. Chem. Phys. 140, 89 (2008)

    Article  Google Scholar 

  59. C.S. Peskin, Acta numerica 11, 479 (2002)

    Article  MathSciNet  Google Scholar 

  60. P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998)

    Article  ADS  Google Scholar 

  61. P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)

    Article  ADS  Google Scholar 

  62. P. Ahlrichs, R. Everaers, B. Dünweg, Phys. Rev. E 64, 040501 (2001)

    Article  ADS  Google Scholar 

  63. M.G. Fyta, S. Melchionna, E. Kaxiras, S. Succi, Multiscale Model. Sim. 5, 1156 (2006)

    Article  MathSciNet  Google Scholar 

  64. T.T. Pham, U.D. Schiller, J.R. Prakash, B. Dünweg, J. Chem. Phys. 131, 164114 (2009)

    Article  ADS  Google Scholar 

  65. V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)

    Article  ADS  Google Scholar 

  66. V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Mat. 16, S4063 (2004)

    ADS  Google Scholar 

  67. V. Lobaskin, B. Dünweg, M. Medebach, T. Palberg, C. Holm. Phys. Rev. Lett. 98, 176105 (2007)

    Article  ADS  Google Scholar 

  68. A. Chatterji, Jürgen Horbach, J. Chem. Phys. 122, 184903 (2005)

    Article  ADS  Google Scholar 

  69. A. Chatterji, J. Horbach, J. Phys.: Condens. Mat. 22, 494102 (2010)

    Google Scholar 

  70. J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009)

    Article  ADS  Google Scholar 

  71. S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Philos. Mag. A 64, 851 (1991)

    Article  ADS  Google Scholar 

  72. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959)

  73. R.F. Fox, G.E. Uhlenbeck, Phys. Fluids 13, 1893 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  74. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, 1990)

  75. J.M. Ortiz, D. Zarate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, 2006)

  76. A. Donev, J.B. Bell, A. De la Fuente, A.L. Garcia, J. Stat. Mech.: Theory E 2011, P06014 (2011)

    Article  Google Scholar 

  77. D. Bedeaux, I. Pagonabarraga, J.M. Ortiz De Zárate, J.V. Sengers, S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010)

    Article  Google Scholar 

  78. J. Howard, et al., Mechanics of motor proteins and the cytoskeleton (Sinauer Associates Sunderland, MA, 2001)

  79. A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, W.M. Gelbart, P. Natl. A. Sci. 100, 9292 (2003)

    Article  ADS  Google Scholar 

  80. F. Balboa, J.B. Bell, R. Delgado-Buscalioni, A. Donev, T.G. Fai, B.E. Griffith, C.S. Peskin, Multiscale Model. Sim. 10, 1369 (2012)

    Article  Google Scholar 

  81. F.B. Usabiaga, I. Pagonabarraga, R. Delgado-Buscalioni, J. Comput. Phys. 235, 701 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  82. F.B. Usabiaga, R. Delgado-Buscalioni, B.E. Griffith, A. Donev, Comput. Method. Appl. M. 269, 139 (2014)

    Article  Google Scholar 

  83. P.J. Atzberger, Phys. Lett. A, 351, 225 (2006)

    Article  ADS  Google Scholar 

  84. P.J. Atzberger, P.R. Kramer, C.S. Peskin, J. Comput. Phys. 224, 1255 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  85. P.J. Atzberger, J. Comput. Phys. 230, 2821 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  86. Y. Wang, J.K. Sigurdsson, E. Brandt, P.J. Atzberger, Phys. Rev. E 88, 023301 (2013)

    Article  ADS  Google Scholar 

  87. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)

    Article  ADS  Google Scholar 

  88. P.A. Thompson, M.O. Robbins, Phys. Rev. A 41, 6830 (1990)

    Article  ADS  Google Scholar 

  89. P.A. Thompson, S.M. Troian, Nature 389, 360 (1997)

    Article  ADS  Google Scholar 

  90. N.V. Priezjev, S.M. Troian, J. Fluid Mech. 554, 25 (2006)

    Article  ADS  Google Scholar 

  91. J. Liu, M. Wang, S. Chen, M.O. Robbins, J. Comput. Phys. 229, 7834 (2010)

    Article  ADS  Google Scholar 

  92. I.-C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111, 3155 (1999)

    Article  ADS  Google Scholar 

  93. W.T. Coffey, Y.P. Kalmykov, The Langevin Equation (World Scientific, 2012)

  94. C.W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural sciences, Vol. 13 Springer Series Syne (Springer, 1985)

  95. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Vol. 1 (Elsevier, 1992)

  96. M.O. Robbins, M.H. Müser, Computer simulations of friction, lubrication and wear, edited by B. Bhushan, Handbook of Modern Tribology (CRC Press, Boca Raton, 2000), p. 717 (cond-mat/0001056)

  97. A.J.C. Ladd, R. Kekre, J.E. Butler, Phys. Rev. E 80, 036704 (2009)

    Article  ADS  Google Scholar 

  98. N.K. Voulgarakis, B.Z. Shang, J.-W. Chu, Phys. Rev. E 88, 023305 (2013)

    Article  ADS  Google Scholar 

  99. A.M. Roma, C.S. Peskin, M.J. Berger, J. Comput. Phys. 153, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  100. B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)

    Google Scholar 

  101. A. Chatterji, J. Horbach, Math. Comput. Sim. 72, 98 (2006)

    Article  MathSciNet  Google Scholar 

  102. A. Brünger, C.L. Brooks, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)

    Article  ADS  Google Scholar 

  103. L.E. Reichl, A Modern Course in Statistical Physics (Wiley, 1998)

  104. K.M. Mohamed, A.A. Mohamad, Microfluid. Nanofluid. 8, 283 (2010)

    Article  Google Scholar 

  105. R. Delgado-Buscalioni, Numerical Analysis of Multiscale Computations (Springer, 2012), p. 145

  106. W. Ren, J. Comput. Phys. 227, 1353 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  107. R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 119, 978 (2003)

    Article  ADS  Google Scholar 

  108. X. Yong, L.T. Zhang, J. Chem. Phys. 138, 084503 (2013)

    Article  ADS  Google Scholar 

  109. C. Pastorino, T. Kreer, M. Müller, K. Binder, Phys. Rev. E 76, 026706 (2007)

    Article  ADS  Google Scholar 

  110. R. Khare, J.J. de Pablo, A. Yethiraj, Macromolecules 29, 7910 (1996)

    Article  ADS  Google Scholar 

  111. B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993)

    Article  ADS  Google Scholar 

  112. R.M. Jendrejack, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 119, 1165 (2003)

    Article  ADS  Google Scholar 

  113. H. Hasimoto, J. Fluid Mech. 5, 317 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  114. I.-C. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)

    Article  Google Scholar 

  115. J. Lyklema, S. Rovillard, J.D. Coninck, Langmuir 14, 5659 (1998)

    Article  Google Scholar 

  116. J.B. Freund, J. Chem. Phys. 116, 2194 (2002)

    Article  ADS  Google Scholar 

  117. A. Beskok, G.E. Karniadakism, Microscale Therm. Eng. 3, 43 (1999)

    Article  Google Scholar 

  118. E. Spohr, J. Phys. Chem. 93, 6171 (1989)

    Article  Google Scholar 

  119. R.G. Horn, J.N. Israelachvili, J. Chem. Phys. 75, 1400 (1981)

    Article  ADS  Google Scholar 

  120. F.F. Abraham, J. Chem. Phys. 68, 3713 (1978)

    Article  ADS  Google Scholar 

  121. S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981)

    Article  ADS  Google Scholar 

  122. M. Plischke, D. Henderson, J. Chem. Phys. 84, 2846 (1986)

    Article  ADS  Google Scholar 

  123. I. Bitsanis, S.A. Somers, H.T. Davis, M. Tirrell, J. Chem. Phys. 93, 3427 (1990)

    Article  ADS  Google Scholar 

  124. I. Bitsanis, G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990)

    Article  ADS  Google Scholar 

  125. P.A. Thompson, M.O. Robbins, G.S. Grest, Isr. J. Chem. 35, 93 (1995)

    Article  Google Scholar 

  126. J.-L. Barrat, L. Bocquet, Faraday Discuss. 112, 119 (1999)

    Article  ADS  Google Scholar 

  127. J. Koplik, J.R. Banavar, Annu. Rev. Fluid Mech. 27, 257 (1995)

    Article  ADS  Google Scholar 

  128. J. Gao, W.D. Luedtke, U. Landman, Phys. Rev. Lett. 79, 705 (1997)

    Article  ADS  Google Scholar 

  129. T.-M. Galea, P. Attard, Langmuir 20, 3477 (2004)

    Article  Google Scholar 

  130. R.R. Netz, Eur. Phys. J. E 5, 557 (2001)

    Article  Google Scholar 

  131. J.N. Israelachvili, Intermolecular And Surface Forces (Academic Press, 1991)

  132. N. Cuvillier, F. Rondelez, Thin Solid Films 327, 19 (1998)

    Article  ADS  Google Scholar 

  133. S.T. Cui, H.D. Cochran, J. Chem. Phys. 117, 5850 (2002)

    Article  ADS  Google Scholar 

  134. M.J. Stevens, M.O. Robbins, Europhys. Lett. 12, 81 (1990)

    Article  ADS  Google Scholar 

  135. T. Das, D. Bratko, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. 99, 410 (1995)

    Article  Google Scholar 

  136. M. Deserno, C. Holm, S. May, Macromolecules 33, 199 (2000)

    Article  ADS  Google Scholar 

  137. R. Messina, J. Phys.: Condens. Mat. 21, 113102 (2009)

    ADS  Google Scholar 

  138. M. Gouy, J. Phys. Theor. Appl. 9, 457 (1910)

    Article  Google Scholar 

  139. D.L. Chapman, Philos. Mag. 25, 475 (1913)

    Article  Google Scholar 

  140. R.R. Netz, H. Orland, Eur. Phys. J. E 1, 67 (2000)

    Article  Google Scholar 

  141. A.G. Moreira, R.R. Netz, Phys. Rev. Lett. 87, 078301 (2001)

    Article  ADS  Google Scholar 

  142. A.G. Moreira, R. Netz, Europhys. Lett. 52, 705 (2000)

    Article  ADS  Google Scholar 

  143. C. Navier, Mémoires de l'Académie Royale des Sciences de l'Institut de France 6, 389 (1823)

    Google Scholar 

  144. L. Joly, C. Ybert, E. Trizac, L. Bocquet, Phys. Rev. Lett. 93, 257805 (2004)

    Article  ADS  Google Scholar 

  145. L. Bocquet, J.-L. Barrat, Phys. Rev. E 49, 3079 (1994)

    Article  ADS  Google Scholar 

  146. N.V. Priezjev, S.M. Troian, Phys. Rev. Lett. 92, 018302 (2004)

    Article  ADS  Google Scholar 

  147. N. Priezjev, Phys. Rev. E 75, 051605 (2007)

    Article  ADS  Google Scholar 

  148. L. Guo, S. Chen, M.O. Robbins, Phys. Rev. E 93, 013105 (2016)

    Article  ADS  Google Scholar 

  149. C. Denniston, M.O. Robbins, J. Chem. Phys. 125, 214102 (2006)

    Article  ADS  Google Scholar 

  150. J. Smiatek, M.P. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008)

    Article  Google Scholar 

  151. G. He, Ph.D. thesis Johns Hopkins University, Baltimore, 2001

  152. T. Nishimura, Y. Ohori, Y. Kawamura, J. Chem. Eng. Jpn. 17, 466 (1984)

    Article  Google Scholar 

  153. P. Panzer, M. Liu, D. Einzel, Int. J. Mod. Phys. B 6, 3251 (1992)

    Article  ADS  Google Scholar 

  154. K. Kamrin, M.Z. Bazant, H.A. Stone, J. Fluid Mech. 658, 409 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  155. L.M. Hocking, J. Fluid Mech. 76, 801 (1976)

    Article  ADS  Google Scholar 

  156. S. Richardson, J. Fluid Mech. 59, 707 (1973)

    Article  ADS  Google Scholar 

  157. E.O. Tuck, A. Kouzoubov, J. Fluid Mech. 300, 59 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  158. A. Niavarani, N.V. Priezjev, Phys. Fluids 21, 052105 (2009)

    Article  ADS  Google Scholar 

  159. C. Kunert, J. Harting, Phys. Rev. Lett. 99, 176001 (2007)

    Article  ADS  Google Scholar 

  160. P.J. Atzberger, arXiv preprint [arXiv:1003.2680] (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Robbins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Chen, S. & Robbins, M. Multi-scale simulation method for electroosmotic flows. Eur. Phys. J. Spec. Top. 225, 1551–1582 (2016). https://doi.org/10.1140/epjst/e2016-60146-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60146-3

Navigation