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Abstract. Chemically active colloids locally change the chemical com-
position of their solvent via catalytic reactions which occur on parts of
their surface. They achieve motility by converting the released chemical
free energy into mechanical work through various mechanisms, such as
phoresis. Here we discuss the theoretical aspects of self-diffusiophoresis,
which — despite being one of the simplest motility mechanisms — cap-
tures many of the general features characterizing self-phoresis, such
as self-generated and maintained hydrodynamic flows “driven” by sur-
face activity induced inhomogeneities in solution. By studying simple
examples, which provide physical insight, we highlight the complex
phenomenology which can emerge from self-diffusiophoresis.

1 Introduction

In the last decade there has been fast progress in the development of small objects
(i.e., sizes in the micrometer range and smaller) endowed with means to be motile
(self-propelled) in a liquid environment (see, e.g., Refs. [1-15]). Thorough and critical
reviews of these rapid experimental developments are provided by Refs. [16-18]: the
various motility mechanisms realized experimentally with chemically active colloids
are discussed, with an emphasis on self-phoresis, by Refs. [16,17] and updated, with a
stronger emphasis on the so-called micro-jets exhibiting “bubble propulsion” (motion
by emission of bubbles), by the recent Ref. [18]. This is matched by a renewed interest
on the theory side in the areas of motility at low Reynolds (Re) numbers (see, e.g.,
Refs. [19-25], which also review the earlier developments, as well as the minireview [26]
in this topical issue) and of “active matter” in statistical physics. (Since these novel
artificial “swimmers” operate under non-equilibrium conditions, they offer insights
into off-equilibrium phenomena, such as, e.g., motility-induced phase transitions [27]
or the formation of “living” crystals [9], which in general are very difficult to ob-
tain.) The theoretical and numerical studies cover numerous issues ranging from the
motility mechanisms at the single-particle level (“active particles”) [28-49] to the
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emergence of complex collective behaviors (“active fluids”), such as swarming, phase
separations, or chaotic turbulence [27,50-57].

One of the often encountered experimental realizations of self-propelled parti-
cles is that of colloidal particles with a surface chemistry designed such as to pro-
mote catalytically activated chemical reactions in the surrounding liquid environment
[1-7,10,11]). Such particles, which we shall refer to as “chemically active colloids”,
achieve motility through various mechanisms of converting “chemical” free energy,
obtained from locally changing the chemical composition of the environment via
catalytic reactions,! into mechanical work. These include, e.g., bubble nucleation
and pumping (“micro-jet engines”, see Refs. [5,11]), or variants (diffusio-, electro-,
electrochemical-) of phoresis [1-4,6,10,14] by exploiting the solvent mediated, effec-
tive interactions between the reactant and product molecules and the surface of the
active particle [58]. Other fascinating examples of self-motility mechanisms are those
of “hot Brownian” particles which move by inducing temperature gradients in the
surrounding solution, discussed in the minireview [59] by Kroy et al. in this issue,
and of the motion of drops due to Marangoni stresses, discussed in detail in the
minireview [60] by Seemann et al. also in this issue.

In these notes we shall discuss the theoretical aspects of self-diffusiophoresis in
solutions of electrically-neutral molecular species [58,61]. This is the simplest case of
self-phoresis, yet it captures many of the general features of phoretic motility mecha-
nisms. Aiming for a concise but insightful introduction to the topic, the presentation
focuses on simplified models, which we expect to provide physical insight, and the
complex phenomenology that can emerge from self-diffusiophoresis is illustrated via a
few selected examples. Nevertheless, the theoretical framework is sufficiently detailed
as to provide the interested reader with a good foundation to embark into further
explorations of the field, starting from the references provided in these notes.?

2 Motility by self-diffusiophoresis

The classic review by Anderson has provided a unified description of various models
of classical phoretic transport (such as electrophoresis, thermophoresis, and diffusio-
phoresis) in terms of “transport by interfacial forces”. Accordingly, a steady-state
motion of the particle relative to the solution emerges from the coupling between
a non-equilibrium, externally maintained spatial variation of a thermodynamic field
(e.g., electric potential, temperature, chemical potential or chemical composition) and
the interaction of the molecules in solution with the colloid (“surface forces”) [58].
While in the case of classic phoresis, non-equilibrium inhomogeneities are created
and maintained externally, e.g., by placing the system in contact with two reservoirs
at different chemical potentials, chemically active colloids create and maintain such
inhomogeneities in chemical potential (and thus in the chemical composition of the
solution) by catalytic chemical reactions they promote in the surrounding medium.
These surface, catalytic chemical reactions are out of equilibrium, i.e., they operate
unidirectionally; roughly speaking, the surface of the colloid turns into a “current in-
jecting” (or “current withdrawing”) boundary. One remark is in order here regarding

! Many of these experimental studies have employed the Pt-catalyzed decomposition of
peroxide (H202) into water (H20) and oxygen (O2) as the reaction of choice; we shall use it
throughout the paper as an example for reactants and products, allowing us to obtain rough
estimates for the values of various physical parameters, such as diffusion constants, required
for the theoretical models.

2 This list is by no means comprehensive, and we regret omitting many other contributions.
In order to keep these notes concise, we have to pass to the interested reader the task of
exploring the bibliography further via the reviews cited here.
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the spatial variations in the composition of the solution. The non-equilibrium charac-
ter of these variations in the composition of the solution, and therefore the existence
of persistent currents of molecular species through the system, is essential. This point,
elegantly highlighted in the study in Ref. [32], can be intuitively understood through
the simple example of a chemically inert sphere immersed in a dilute solution (i.e.,
with a low number density ¢ of the solute) interacting with the solute molecules via
a potential ®(r), which is not necessarily spherically symmetric. The system is taken
to be thermostated. After a transient time, the system reaches an equilibrium state
in which the solute density around the colloid attains the Boltzmann distribution:
e(r) ~ exp[—F®(r)], with 8 =1/(kpT), kp the Boltzmann constant, and T" the tem-
perature. Thus the resulting equilibrium distribution ¢(r) is spatially varying, and in
general it is not spherically symmetric, yet the system is in thermodynamic equilib-
rium; therefore both the solution and the particle are motionless (except for thermal
fluctuations).

It is important to estimate the “life-time” of these variations and compare it with
the time scale set by the eventual motion of the particle. For molecular species such
as Os, at room temperature the diffusion constant D in liquids such as water is of the
order of 1072 m?/s. Thus the diffusion time t4;¢ over a length comparable with the
radius R ~ 107% m of the colloid is taiff = R°/D ~ 1073 s. The experiments with
chemically active colloids report typical velocities of the colloid U < 10 pm/s, and
thus one infers characteristic “drift” times tgpipe = R/U 2 107! s > t4;¢¢. (Due to
its large size, the translational and rotational diffusion times of the colloid are order
of magnitude larger than tq;rs.) Therefore one can indeed expect that the chemical
activity may induce, via fast molecular diffusion, a quasi-steady state around the col-
loid and thus a situation which resembles an “externally-maintained” variation in the
chemical composition.

The considerations above lead to the conclusion that the conditions for a “self-
induced” phoresis may be met by the chemically active colloids. We thus proceed by
identifying the key components, which are present in any experimental realization
of self-phoretic colloids. This allows us to formulate a minimal theoretical model of
chemically active colloids, exhibiting self-diffusiophoresis as the conceptually simplest
type of self-phoretic motion.3

(i) Chemical activity: The simplest model of a reaction involving the particle and
the solution is the one in which a solvent molecule contacting the particle
surface is converted with a certain probability to a solute molecule; this defines
an effective reaction rate. This condition, together with particle reservoirs for
solvent and solute species and diffusion of solute molecules, provides for steady
state non-equilibrium variations in the chemical composition.

(if) Colloid-solution interactions: The solute molecules interact with the colloid
via a potential which differs from the potential characterizing the interaction
of the solvent molecules with the colloid. Thus the notations of “solute” and
“solvent” have a meaning beyond that of mere labels applied to otherwise
identical molecular species.

3 Tt does not require much argument to realize that modeling a system with non-uniform
temperature (thermophoresis) is clearly a more challenging task; likewise dealing with an
electrolyte (charged species, electrophoresis) rather than with an electrically neutral system.
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(iii) Asymmetry: For motion of the colloid to occur, the system consisting of the par-
ticle plus the solution with inhomogeneous chemical composition must possess
some degree of spatial asymmetry. (Here we do not consider the occurrence of
spontaneous symmetry breaking.) The most common sources of spatial asym-
metry are: a spatially-inhomogeneous activity (i.e., only parts of the colloid
surface posses catalytic properties), a reduced symmetry of the shape of the
colloid, or motion near boundaries (walls or interfaces) which intrinsically dis-
tort the spatial variations of the chemical composition.

Following these lines one eventually arrives at the basic model of self-
diffusiophoresis proposed by Golestanian et al. [28] and analyzed further in Refs. [30,
32,34-38,40]. In spite of its relative simplicity, this model has been shown to capture
the phenomenology encountered experimentally for polystyrene spheres partially cov-
ered by Pt and immersed in HyO, aqueous solutions* [7,37]. We shall discuss this
model in further detail in the present section and use it in, c.f., Sects. 3 and 4 in order
to highlight some of the complex behaviors exhibited if self-diffusiophoretic motion
couples with boundaries or external fields.

2.1 Minimal model of self-diffusiophoresis

We consider a chemically active colloidal particle of linear size R ~ 1 um (where R can
be defined as max|r; —ra|/2, r1 2 € Sp, with S, denoting the surface of the particle,
or, equivalently, via the radius of the smallest sphere that includes the colloid within
its volume) which is suspended in an unbounded, incompressible Newtonian liquid
solution of, to a very good approximation, constant mass density p and viscosity u (see
Fig. 1(a)). The particle is assumed to be neutrally buoyant; the case in which gravity
plays a role will be briefly discussed in, cf., Sect. 4. At the time ¢ = 0 (i.e., before the
chemical activity of the colloid is “turned on”), the solution is quiescent and consists
of solvent molecules only. A part S, of the surface or the whole surface of the particle is
“chemically active”, e.g., by being covered with a catalyst; once the chemical activity
is “turned on”, the part S. of the particle promotes the irreversible conversion of
solvent molecules S into molecules of species A, S — A, with a “reaction” rate k which
is constant in time and space.® Furthermore, both the solute molecules of species A
and the solvent molecules are assumed to be much smaller than the colloid, such
that they can be approximated as point particles and the solution can be treated
as a continuum. The A molecules diffuse in solution with diffusion coefficient D,
and the number density of the A species is taken to be very small compared to the
number density of the solvent (corresponding to a dilute ideal solution) such that
in solution the interaction between the A molecules is negligible. The interactions of
the A molecules with the solvent molecules and those between the solvent molecules
are encoded in the viscosity u of the solution. We take the solution to be in contact
with a reservoir of solvent molecules S and with a reservoir of product molecules A
which, far from the particle, maintain a constant number density cg for the solvent

4 However, there is a significant debate on whether or not the reaction mechanism in these
particular experimental realizations can indeed be mapped onto a simple production of an
electrically neutral molecular solute [62,63].

5 For simplicity, we consider the case in which the solvent is also the reactant and there
is a single product molecular species emerging from the chemical reaction [38]. The case in
which several species are involved in the chemical reaction can be analyzed along similar
lines (see, e.g., Refs. [40,49]). But it requires a more cumbersome algebra and possesses
potential conceptual complications which arise from dealing with multi-component mixtures
and from the interplay of several different molecular masses and interaction potentials [64].
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Fig. 1. (a) Schematic (and not to scale) illustration of a colloidal particle, which has a
chemically inhomogeneous surface Sp, immersed in an unbounded solution. The “active”
part S. (black area) of the surface Sp of the particle catalyzes upon contact a chemical
transformation of solvent molecules S (not depicted) into product (solute) molecules A
(small grey circles) which diffuse in the solution. The part Sp \ S. (grey area) is chemically
inactive. O’ denotes the center of mass of the particle. (For the definitions of S5 and Si, see
the main text.) (b) Schematic illustration of a spherical “Janus colloid”. As in (a), black
(grey) indicates the chemically active (inactive) regions. The catalytic area is a spherical cap
(of a size determined by the radius R and the opening angle 6p); thus the physical properties
of the surface exhibit axial symmetry with respect to the axis (Oz) passing through the
centers of the particle and the cap.

molecules and a constant number density ¢y for the solute molecules. We assume
that the diffusion constant D; of the solvent molecules is sufficiently large such that
the reaction is the rate limiting step of the conversion (i.e., the Damkdhler number
Da ~ kR/D; is assumed to be very small, see, e.g., Ref. [65]). Under these conditions,
the reaction on the colloid surface S, effectively acts solely as a source releasing solute
molecules A into the solution. (Note that by the definition of this model, the solute
remains at all times dissolved in the solution; i.e., we do not consider here the cases
in which it can phase separate as in, e.g., the bubble-propulsion of micro-objects as
reported in Refs. [5,11].)

Finally, it is assumed that the interaction of a (point-like) molecule of species
S (A), located at r, with the colloid is described by the potential ¢g(4)(r), and we
denote by ®(r) = ¢a(r)—(ma/ms)ps(r) = da(r)—¢s(r) the interaction potential of
A molecules with the colloid relative to that of the solvent molecules. (Here mg and
m 4 are the molecular masses of the solute and solvent molecules, respectively; for the
system described above, mass conservation in the reaction requires mg = my.) The
typical molecule-colloid interaction potentials ® (e.g., the van der Waals interaction)
are steeply decreasing functions of the distance from the surface of the colloid (®(|r| —
00) — 0), and therefore one can generally find a surface Ss enclosing the colloid such
that 8®(r) < 1 and |V®(r)| ~ 0 for r outside the domain enclosed by Ss. The
domain (of volume Vs) delimited by Sp and Sj, where the solute-colloid interactions
are relevant, will be called “surface film”. (Note that, following the terminology in
Ref. [58], this domain is often called “interfacial layer”.) In order that the surface
of the particle is impenetrable to the solvent and solute molecules, it is necessary
that ¢g(ay(r) — +oo for r € V,, where V, denotes the volume enclosed by Sp.
Furthermore, we will assume that the potential ®(r) is such that for r outside Vp it
satisfies ®(r — rp) = 400, i.e., near the surface of the particle the solvent molecules
are preferred over the solute molecules.
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2.2 Motion of particles, diffusion of solutes, and hydrodynamics of the solution

Due to the interaction encoded in ®(r), a fluid element 6V located at r experiences a
force £6V, where the force density is given by £ = —¢(r)V®(r). (This follows from the
total force density fiot = —(csVs + cVa) by: using that the mass density p of the
solution is constant, which allows one to express ¢, in terms of p and ¢; then separating
fio: into £ and a gradient term involving only ¢g. The latter term is then included in
the definition of the pressure p of the solution and thus no longer appears explicitly
in the calculations, see, e.g., Ref. [40].) According to Newton’s third law, the solute
molecules in the fluid element §) exert a force of equal magnitude but of opposite
sign —f0V on the colloid. (| fvoo foV|, where V5 denotes the volume of the solution,
thus quantifies the magnitude of the force exerted by the solute distribution on the
colloid. For typical interaction potentials ®(r) the integral is bounded [38,40], i.e., the
colloid experiences — as expected — a finite force.) Therefore, both the solution and
the colloid are subject to distributed forces. If free to move, they may achieve a state
of relative motion in which the colloid moves as a rigid body with translational and
rotational velocities V and Q, respectively, while a hydrodynamic flow u(r) is induced
in the solution. Since the distribution of forces is determined by the distribution ¢(r)
of the number density of solute molecules, we start by studying the latter.

Due to the fact that in the solution (i.e., outside the surface of the colloid and
inside the container located at a macroscopic distance from the colloid) there are no
reactions involving the solute, there are no sources or sinks of solute in the bulk.
Since, as discussed above, the diffusion of the solute is very fast, a quasi-steady-state
distribution (around the current position of the particle) is established over time
scales much shorter than that of the macroscopic motion of the colloid. Accordingly,
¢(r) satisfies the steady-state conservation law

V-J=0, (1)
where the current of solute molecules
J=c(r)u(r) — DVe(r) — De(r)V(B2(r)) (2)

accounts for the advection of the solute by the flow of the solution, the diffusion due to
the density gradients, and the drift of the solute molecules due to their interaction with
the colloid [38,40,64,65]. The relative magnitude of the advection and the diffusion
currents is characterized by the Péclet number Pe = |V|R/D, where V is the velocity
of the colloid. For typical values |V| ~ 1 — 10 um/s as observed experimentally and
for D ~ 1079 m? /s as discussed above, for a particle of R = 1 um the typical Péclet
numbers are in the range Pe ~ 1072 — 107!, Therefore, in typical cases the advection
of the solute is negligible. This implies a major simplification of the problem because
it effectively leads to a decoupling of the dynamics of the solute distribution from
that of the flow of the solution.® By combining Eqgs. (1) and (2), neglecting the
advection component, and adding the appropriate boundary conditions we arrive at
the following boundary-value problem for the field ¢(r):

V- [Ve(r) + ¢(r)V(B2(r))] = 0, (3a)
c(|r] = 00) = co, (3b)

and
—D{n - [Vc(r) + c(r)V(B(r))]}s, = K(rp). (3¢)

6 For a more rigorous discussion of this point see Ref. [38], while for a thorough discussion
of the corrections at non-vanishing Pe numbers see Ref. [65].
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Here and in the following n denotes the normal to the corresponding surface oriented
into the fluid. The boundary condition in Eq. (3¢) encodes the activity of the particle
by equating the solute current along the normal to the surface with a source func-
tion K(rp) > 0 which accounts for the conversion of solvent molecules into solute
molecules at those parts of the surface that are catalytic (rp € S;). At the points rp
belonging to the inert part one has K(rp) = 0. (An “annihilation” of the solute mole-
cules over certain parts of the surface could be included by allowing for K(rp) < 0
over that part [30,38].)

The hydrodynamic flow of the solution is described by the Navier-Stokes equa-
tions subject to appropriate boundary conditions. A significant simplification of this
problem is possible by estimating, guided by the values observed in experimental
studies of chemically active particles, the corresponding Reynolds number defined as
Re = pR|V|/p. By using for p and p the values corresponding to water at room
temperature, R ~ 1 um, and [V| < 10 um/s one arrives at Re < 107°. Thus the hy-
drodynamic flow u(r) can be obtained from the solution of the incompressible Stokes
equations with a body force density f = —¢(r)V®(r) subject to boundary conditions
of a quiescent solution far from the colloid and no-slip on the surface of the colloid, i.e.,

V-0 —c(r)Ve(r)=0, V-ulr)=0, (4a)
u(|r| = o0) =0, (4b)
u(rp)=V+Qx(rp—ro), rp € Sp, (4c)
where
= —pl+p [Vu + (Vu)q (5)

is the stress tensor in the solution, p(r) is the pressure, and | is the identity tensor.

Equations (3) and (4), which are coupled (weakly) by the force density term in
Eq. (4a), must be supplemented by additional conditions in order to determine the as
yet unknown velocities V and ©, which enter via the boundary conditions in Eq. (4).
This is provided by a closure condition imposed by the balance of forces and torques
acting on the colloid. In the absence of external forces (F.,; = 0) and external torques
(Tept = 0)7, this takes the form

/dS(E> ‘n+ / AV e(r)VO(r) = —Fept =0, (6a)
Sp Veo

/ dS (rp — ror) % (5 1) + / dV (r —to/) X [e(x)VD(r)] = —Tour = 0. (6D)

Sp Voo

Thus, the hydrodynamic boundary conditions at the surface of the particle, deter-
mined by V and €2, must be chosen such that the resultant flow obeys the relations in
Eq. (6). Finally, one notes that under the approximation of vanishing forces outside
the domain delimited by Ss (see Fig. 1(a)) the volume integrals over V. are approx-
imately equal to volume integrals over V5. By applying the divergence theorem to

7 If there are external forces or torques acting on the particle, the linearity of the Stokes
equations allows one to account for their effects separately via standard procedures. The
examples presented in Sect. 4.1 illustrate this point.
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Eq. (4a) integrated over the volume delimited by Sp and any surface, in particular
Sy, of a sphere, enclosing S5 (see Fig. 1(a)), one can reformulate Eq. (6) as

/ds?-ngo, /dS(r—ro,)x(?-n)zo. M)

St St

This is a condition of zero hydrodynamic force and torque exerted by the flow u(r) on
any surface Sy, enclosing the surface film. (Actually this is an approximate relation
which relies on effectively neglecting |V®(r)| outside the surface film. True equalities
hold upon the replacement S, — So [40,58,65].)

By solving the coupled Egs. (3), (4), and (6) (or (7)), in principle one can obtain
the linear and angular velocities of the particle, as well as the distribution of solute
and the hydrodynamic flow field of the solution. However, in practice this is a very
difficult problem, particularly because the Stokes equations have to be solved with a
priori unknown boundary conditions (since V and € are initially unknown) which
then must be adjusted until the condition in Eq. (6) is satisfied. Even for the simpler
case of a spherical Janus colloid (see Fig. 1(b)) this turns out to be a very difficult
problem, which can be solved only approximately in terms of a perturbation series [40].
If one is interested only in the velocities V and €2, the complication described above
can be bypassed (at the expense of leaving the hydrodynamic flow u(r) unknown) by
applying the generalized Lorentz theorem [66], as carried out for a spherical surface
in Ref. [38]. The interested reader is encouraged to follow up on this point, guided by
Ref. [38]. We shall discuss the Lorentz theorem below in the context of particles for
which the surface film is very thin. Specific examples of using this formulation will
be provided in, cf., Sects. 3 and 4.

2.3 The thin surface film approximation and phoretic slip

Further progress can be made if the potential ®(r) has a very short range, i.e., if the
thickness § of the surface film is very small compared with the macroscopic length
scales set by the size of the particle R and by the minimal radius of curvature of
Sp. Furthermore, one assumes that ®(r) varies only weakly along the surface, while
the variations in the direction normal to the surface are large because it decays
to zero within the distance J. Under these conditions, treating both the diffusion
and hydrodynamics via asymptotic matching on Ss of an inner (within the surface
film) and outer solution reduces the initial problem to that of solving in the outer
domain the Laplace (diffusion) equation and the force free, incompressible Stokes
(hydrodynamics) equation, respectively. A detailed presentation of this approach can
be found in Anderson’s classic review of phoresis [58]. Thus here we shall only concisely
discuss the main points.

Under the thin surface film assumptions formulated above, at any point rp € Sp
we can define a rectangular region of thickness § and mesoscopic “in plane” size (i.e.,
its lateral extension is much smaller than R but much larger that ¢). In this planar
geometry, for which one introduces cylindrical coordinates (¢, ®,h) with the origin
at rp (h denoting the vertical coordinate, ¢ the radial one, and ® the polar angle),
the inner problem for diffusion renders a rapid relaxation of the solute density along
the direction normal to the surface towards the equilibrium Boltzmann distribution.
The latter is determined by the local potential ¥(h;rp) = ®(r), wherer =rp+hey,
which is defined under the above assumption that ® does not vary laterally over
these mesoscopic scales. This implies ¢;n((,h) = cout(C) exp[—B¥(h;rp)], where
Cout(€) is the solution of the outer problem evaluated at Ss, matching ¢;,, (¢, h — 00).
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The hydrodynamic problem in the inner domain is solved in the lubrication approx-
imation, accounting for the fact that, via the prefactor cy,:(¢), the variation of the
solute distribution in the direction ( translates into a variation of the osmotic pres-
sure along the surface and thus drives hydrodynamic flow parallel to the surface [58].
The final result of the analysis of the dynamics in the thin surface film is that at the
outer surface Ss one obtains a boundary condition for the hydrodynamics in the outer
domain (for which Sy is the inner boundary) in the form of a prescribed phoretic slip.
This is determined by the number density distribution of solute obtained from the
analysis in the outer domain and by the potential W:

L(rp)

u,(rp) = — i V|e(rp) := —b(rp)V)ic(rp), (8a)
where
Llee) = [ dhn {exp [-pu(Iare)] - 1) (8b)
0

and V|| denotes the projection of V onto the tangent plane of the surface. As in-
dicated above, £ (which has the units of an area) and thus the “phoretic mobility”
b(rp), which has the units of m®/s, may depend on the position along the surface.
This accounts for, e.g., the catalyst covered part of the surface interacting with the
solute molecules differently than the inert part. The quantity £ entering into the
definition of the phoretic slip deserves further discussion. As discussed above, the po-
tential ¥(h;rp) is repulsive (positive) at h — 0 and decays to zero at large distances.
Therefore, in general the potential can be either repulsive at all distances, or it can
become attractive beyond a certain distance hg. In this latter case it exhibits an at-
tractive minimum which corresponds to adsorption of the solute. Thus one has £ < 0
(i-e., b < 0) for purely repulsive interactions ¥ (h). If, however, ¥(h) has an attractive
part, hg is sufficiently small, and the attractive minimum is sufficiently deep, one can
have £ > 0 (i.e., b > 0). For the rest of the notes, the notion “attractive interactions”
will refer strictly to the latter case, i.e., potentials ¥(h) which have attractive parts
and satisfy £ > 0.

In the limit of thin surface films, the Egs. (3), (4), and (7), which govern self-
diffusiophoresis, take the form

VZ¢(r) =0, (9a)
=D [n-Ve(r)lls,ns, = K(rp), (9b)
c(|r| = 00) = co, (9¢)
and
V-6=0, V-u)=0, (10a)
u(r)ls;~sp = us(rp) + V+Qx (rp—10/), TP € Sp, (10D)
u(fr| = 00) =0, (10c)

with u, given by Egs. (8a) and (8b), while the boundary conditions are imposed at
(approximately) the surface Sp (because at the length scales of the outer problem
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Ss is infinitesimally close to Sp), and with the zero-force and zero-torque conditions
implemented also formally at Sp (but actually at Ss):

/dS(;~n:O, /dS(I'P—I'O')X(g'H)QO. (11)
SP SP

Although the resulting equations are simpler, the complications, due to a priori un-
known boundary conditions in the hydrodynamics problem, persist.

As stated above, the velocities V and € can actually be determined without
solving the full problem by employing the Lorentz reciprocal theorem [66—68]. This
states that any two flow fields u(r) and u,(r), which are solutions of the force-free,
incompressible Stokes equations within the same domain D, obey the relation

/u~(ga~ndS=/ua~g~ndS, (12)
D oD

where o and ?a denote the stress tensors corresponding to the two flow fields and
0D the surface enclosing the domain D.

We apply the Lorentz theorem to our system by choosing u to be the flow solving
Eq. (10) and u, (the so called “auxiliary problem”) to be the flow corresponding to
a chemically inert particle (i.e., no phoretic slip: uga) = 0) moving with prescribed
velocities V, and €,. Such an auxiliary problem can be straightforwardly solved
either analytically (for simple shapes like spheres or spheroids) or numerically (e.g.,
by using the Boundary Element Method (BEM) [45,69]). The domain in our case is
delimited by S5 ~ Sp and the surface S, at infinity. Noting that with increasing
distance from the particle both u and u, must decay at least as 1/|r|, the integrals
over S vanish and thus in Eq. (12) only the integrals over Sp, where the flows are
prescribed by the boundary conditions, remain. Exploiting the fact that V, Q, V,
and Q, are constant vectors, and using Eq. (11), one arrives at

V-FQ+Q-TQ:—/uS~§>a~ndS’, (13)

Sp

where F, and T, are the hydrodynamic force and torque on the particle exerted by
the auxiliary flow u,. In Eq. (13) the unknowns V and € are now isolated, rather
than being implicit as in the initial formulation, while all the other terms are known,
following from the solution of the auxiliary problem. Therefore, by selecting six lin-
early independent auxiliary problems (of the form discussed above) and formulating
for each of them Eq. (13) with the corresponding F,, T, and with the integral on the
rhs, one obtains a system of six linear equations for the six components of V and €2
as the unknowns. This concludes the solution.

The calculation above is greatly simplified for particles with shapes and catalyst
decoration exhibiting a high degree of symmetry. Examples are Janus spheres (see
Fig. 1(b)), cylinders, spheroids, or dumbbells. In these cases various components of
V and Q can be shown to vanish due to the symmetry of the problem, and for these
shapes analytic solutions for translations or rotations in quiescent fluids are known.
Such calculations are discussed in, e.g., Refs. [28,30,34,44,65]. We concisely present
as an example the Janus sphere shown in Fig. 1(b), which is one of the chemically
active colloids frequently used in experimental studies [7,10,16]. Due to the axial
symmetry of the system, one can infer that £ = 0 and the only possible motion is
a translation with velocity V = Ve, along the z-axis (see Fig. 1(b)). Choosing the
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auxiliary problem to be that of a chemically inert sphere translating with velocity
V. = V,e., which can be analytically solved [67], one has ga ‘n|—g = —%VQ and

F, = —6muRV,. Inserting these expressions into Eq. (13), one arrives at [28,30]

1
= / dSus = —(uy), (14)

|r|=R

i.e., the velocity of the particle is the negative of the phoretic slip averaged over
the surface of the sphere. This result can then be particularized for a specific model
of chemically active particles, i.e., specified activity (K(rp)) and phoretic mobility
(b(rp)) functions. For example, one can choose K(rp) to be equal to a constant K at
the catalytic part and zero at the inert part (the so-called “constant flux” condition),
and the phoretic mobility to be a constant b over the whole surface. We leave it to
the reader to verify that after solving the diffusion equation (Eq. (9)) and calculating
the phoretic slip (Eq. (8a)), the surface average in Eq. (14) leads to [30,34]

B %1—(:05200

V=T e, (15)

3 Self-diffusiophoresis near hard walls

In experimental studies, chemically active Janus colloids operate within vessels and
therefore during their motion they may reach the vicinity of the walls bounding the
solution. We continue with the simple model of a diffusiophoretic, spherical, and ac-
tive Janus colloid as discussed at the end of the previous section and consider the
situation that it operates near a planar wall. (A detailed discussion of the case of
mechanically propelled swimmers — i.e., not moving by gradients of thermodynamic
fields — near surfaces is provided by the minireview [70] in this topical issue.) The
active particle “senses” and responds to the presence of the boundary via the chem-
ical and hydrodynamic fields it creates. First, the wall is impenetrable to the solute
released by the particle, and this induces changes in the distribution of the solute
number density at the particle surface. The change in the solute distribution leads to
changes in the phoretic slip at the particle surface, which translate into changes in
the hydrodynamic flow induced by the particle. Second, hydrodynamically the parti-
cle creates disturbance flows in the fluid, and these flows are reflected by the no-slip
boundary at the walls, coupling back to the particle. The feedback loop between sens-
ing and response is expected to depend on the surface chemistry (e.g., how much of
the surface of the particle is covered by catalyst), and can give rise to a rich behavior
comprising, in particular, certain surface bound, stable steady-states of motion [45].
The emergence of such steady-states is a complex phenomenon because it requires
that the phoretic slip at the particle varies around its surface in such a way that
it cancels the hydrodynamic rotation (spinning) which usually accompanies a trans-
lation of the particle parallel to the wall, e.g., due to being driven by an external
force.

This diffusiophoresis problem can be straightforwardly approached by using the
formalism discussed in Sect. 2: adding to Eq. (9) the boundary condition of impene-
trability at the wall; adding to Eq. (10) the no-slip boundary condition at the wall;
using the Lorentz reciprocal theorem directly in the form of Eq. (13) (which is possible
since the corresponding integrals over the surface of the wall vanish due to the no-slip
boundary condition in both the active particle and the auxiliary problem) [45]. For
a uniform phoretic mobility b < 0 (i.e., repulsive interactions between the solute and
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Fig. 2. A chemically active Janus sphere in sliding [(a),(c)] and hovering [(b),(d)] states.
The planar wall is located at z = 0. The spherical-cap area covered by catalyst is indicated
in black (correspondingly, the gray area denotes the chemically-inert part); the coverage
by catalyst (i.e., the opening angle 6y of the corresponding spherical cap, see Fig. 1(b))
is given by 6y ~ 114° (panel (a)), 6o ~ 154° (panel (b)), and 6y = 90° (panels (c), (d)).
The corresponding phoretic mobility b(r) is a constant b < 0 over the whole surface (panels
(a), (b)), or takes different values beap < 0 and binert over the active cap and the inert
regions, respectively (panels (c), (d)), with binert /beap = 0.7 (c) and —0.7 (d), respectively.
The streamlines corresponding to the flow field in the spatially fixed coordinate system
(“laboratory frame”) are shown as white lines, while the color coding represents the solute
number density ¢(r) in units of the characteristic density co = KR/D. Note the changes
in the structure of the streamlines corresponding to the same type of steady state but for
different sets of parameters, when comparing (a) and (c), respectively (b) and (d).

the colloid), one can indeed find two types of such surface bound states if sufficiently
more than half of the particle surface is covered by catalyst (see Fig. 1(b) for the para-
metrization of coverage): (a) a “sliding” state, in which the colloid translates along
the wall while keeping a constant height above the wall and a constant orientation
of its axis of symmetry (illustrated, for 6, ~ 114°, in Fig. 2(a)); and (b) a “hover-
ing” state, in which the particle is motionless and has its axis of symmetry oriented
perpendicular to the wall, while the hydrodynamic flow of the solution is maintained
(illustrated, for 8y ~ 154°, in Fig. 2(b)). In both cases there is a complex structure of
the solute distribution as well as of the streamlines, mediating the emergence of the
steady-state orientation and height above the wall (see also Ref. [71]). The study in
Ref. [45] has provided evidence for similar states for more complex model systems,
e.g., particles with different phoretic mobilities over the catalytic and inert parts.
As an example, in Figs. 2(c) and (d) sliding and hovering states, respectively, are
illustrated for the case of a half-covered (6y = 90°) Janus particles with b.qp < 0 and
binert/beap = 0.7 (¢) and —0.7 (d), respectively.

Experimental observations of such surface-bounded states for a few types of chem-
ically active particles and various confining geometries have been reported recently
[72-74]. (Note that in these studies the analysis is more involved due to the fact that
the force and the torque due to gravity are relevant and thus have to be included
in the corresponding force and torque balance (Eq. (6)).) These suggest that the
phenomenon may be generic for chemically active particles.
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4 Self-diffusiophoresis under external fields or flows

The interplay of self-propulsion and external fields or flows can result in rich be-
haviors not easily foreseen from the consideration of the active and external driving
mechanisms in isolation (see, e.g., the minireviews by Stark [75] and by Clement [76]
in this topical issue). For instance, active particles can exhibit tazis: under certain
conditions, they can reliably reorient and migrate in response to cues (such as gravita-
tional fields [15,77], the topography of bounding surfaces [73,74], externally imposed
flows [78], or fluid interface-response flows [79]) in their environment. Here we shall
consider the possible effects of gravity and external flow. These effects include nega-
tive gravitaxis, or migration against the direction of gravity, and negative rheotazis,
or migration against the flow direction.

4.1 Gravitaxis

Catalytic Janus particles are typically much heavier than water. The weight of a par-
ticle will, in part, determine whether it sediments to the bottom of a device or spends
significant time in the bulk. The weight of the particle competes against Brown-
ian noise, which promotes diffusion into the bulk, and “swimming activity”, which,
when the active velocity of the particle is oriented against gravity, promotes escape
from a bottom surface. The relative significance of gravity and thermal noise can
be quantified by the Péclet number Pe, = vyR/Dp, where v, is the settling ve-
locity of a passive particle of radius R and Dp is its diffusion coeflicient. The set-
tling velocity can be estimated by balancing the Stokes drag Fp = 6muRv, with
the gravitational (buoyancy) force Fj;. Using the “eggshell” model of a Janus par-
ticle [77], in which the thickness of the catalytic cap is greatest at the particle
pole and smoothly decreases to zero at the “equator”, one obtains the expression
Fy, = %WtRZ (Peap — Pwater)g + %WRg(pmert — pwater)g, Where t is the maximum thick-
ness of the cap. For a polystyrene particle (pipers = 1050 kg/m?) with R = 2.5 ym and
a platinum cap (peqp = 21450kg/m?) of t = 5nm in water, one obtains v, = 0.66 um/s
and Pe, ~ 28. If the particle has a silica core (pinert = 2650 kg/m?) instead of
polystyrene, one obtains v, = 22.7 um/s and Pe, ~ 500. For both particles, the ef-
fect of thermal noise is significantly smaller than the effect of gravity. On the other
hand, the relative significance of gravity and self-propulsion can be estimated by com-
paring the corresponding v, with the contribution of self-propulsion to the particle
velocity. A typical phoretic velocity in bulk liquid is V' ~ 5pum/s. Here we find a
significant difference: the silica particle will sediment but a polystyrene particle can
escape gravity.

This type of Janus particle is not only heavy, but also bottom (Pt side) heavy,
owing to its inhomogeneous composition. Assuming b < 0 (the particle tends to
move away from the cap), the bottom-heaviness will tend to align the particle to
move upward, i.e., against gravity. The contribution of bottom-heaviness to the
angular velocity €2, of the particle can be estimated by balancing a Stokes drag
torque 7p = SWyRSQg with a gravitational torque 7, = %ﬂ'thpcapgycm sin(t), where
Yem =~ 3/4(R +t) [77], and ¢ is the orientation of the propulsion axis with respect
to the vertical. (We note that the density of water does not appear in this expression
because the fluid pressure does not exert a torque on the particle.) For both particles,
the maximum value of €y, occurring at ¢ = 90°, is Qg ~ 3.7 deg/s.

These effects have indeed been observed experimentally [77]: orientation and mo-
tion of active Janus particles were found to be biased upward, against gravity, and
larger particles exhibited a greater bias than smaller ones. A more complex experi-
mental realization, combined with a theoretical analysis, was reported by ten Hagen
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Fig. 3. Numerical studies show that bottom-heaviness can induce “sliding” states for self-
diffusiophoretic particles. The bottom heavy Janus particle (polystyrene core, as described
in the main text) escapes gravity and reaches the upper surface. The mechanism leading to
the steady state is depicted at the right side of the figure.

et al., who used L-shaped active particles, instead of bottom-heaviness, to explore
shape asymmetry as an alternative route to gravitaxis [15].

If the particle can escape gravity, some additional interesting effects are possible.
Experimentally, it has been observed that active catalytic particles accumulate at
upper surfaces [62]. As shown in Fig. 3, the simple model of diffusiophoretic propulsion
of a bottom heavy Janus particle discussed above can capture such an effect: a particle
is attracted to a steady orientation and constant distance from an upper wall (i.e., a
“sliding state.”) The mechanism sustaining the steady orientation is depicted in Fig. 3.
The bottom-heaviness of the particle contributes a counter-clockwise component to
the angular velocity of the particle, tending to rotate the cap away from the wall. On
the other hand, the hydrodynamic interaction with the wall always tends to rotate
the cap towards the wall. These two contributions® exactly cancel if the particle is in
the sliding orientation. Simultaneously, the particle achieves a steady height through
hydrodynamic interaction with the wall.

4.2 Rheotaxis

This subsection deals with the effect of external flow on the behavior of active colloids
and the possibility of rheotaxis. Several decades of study have established that sper-
matozoa can achieve negative rheotaxis in the presence of flow and bounding surfaces
(see, e.g., Refs. [80,81]). The mechanism is elegant and intuitive. Sperm heads tend
to be attracted to surfaces. If a sperm head is attracted to a surface, it can act as a
“pivot” for the whole spermatozoan. The tail, pointing into the bulk, is in a region of
stronger flow than the head. Consequently, the whole spermatozoan is rotated around
the head, like a weather vane, so that the tail points downstream. In this orientation,
the spermatozoan swims upstream.

However, the “weather vane” mechanism can only apply to elongated particles.
Thus the issue arises whether a spherical catalytic Janus particle can also exhibit
rheotaxis. Based on the results of Sect. 3, one can anticipate a possible route to
rheotaxis for a “hoverer.” The envisaged mechanism is shown in Fig. 4(a). There
we consider a particle which in a quiescent fluid is in a hovering state. The appli-
cation of an external shear flow tends to rotate the particle clockwise. However, the

8 For this model of a chemically active particle with uniform phoretic mobility b the
wall reflected density field contributes only to changes in the distribution of phoretic slip.
When b(r) is not constant over the surface, an additional contribution — of the same order
of magnitude as the other two — to the rotation of the symmetry axis occurs due to the
coupling of the gradient of the wall-reflected density field with the non-uniform phoretic
mobility (see Refs. [45,58,74]).
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(a) “hovering” external flow (B}

initial
state

Fig. 4. (a) A schematic illustration of a mechanism to achieve a rheotactic state. A “hov-
ering” particle (left panel) tends to rotate (right panel, blue arrow) when exposed to an
external shear flow (right panel, thin black arrows). The chemical activity response of the
particle near the wall induces an opposite rotation (right panel, magenta arrow) back to-
wards the (stable in the absence of the flow) hovering state. The two contributions to par-
ticle rotation may balance at a certain orientation (right panel, depicted by equal lengths
of the blue and magenta arrows), and a steady orientation angle emerges; simultaneously,
the particle achieves a steady height above the wall. As a result, the particle translates up-
stream (medium size black arrow), with its catalytic cap (blue) oriented slightly downstream.
(b) Example of a numerically calculated trajectory for a hoverer near a wall reaching a rheo-
tactic state in external flow.

near-surface self-diffusiophoretic activity of the particle tends to rotate the parti-
cle back to the hovering state. For small deviations from the hovering orientation,
this active contribution is expected to strengthen as the deviation from the hovering
orientation increases. Therefore, there should be a steady orientation in which the
two contributions balance. Additionally, this orientation is expected to be stable: for
larger (smaller) deviations from the hovering orientation, the contribution from the
activity is stronger (weaker) than from shear. Simultaneously, the particle attains a
steady and stable height above the wall due to the solute “cushion” effect illustrated
in Fig. 2. Finally, because the cap is oriented slightly downstream, the particle moves
upstream if self-propulsion is strong enough to overcome the external flow.

This intuitive picture leads to the expectation that there is a rheotactic steady
state, which is stable against perturbations within the shear plane, i.e., vertical trans-
lations of the particle or rotations of the particle orientation vector within the shear
plane. However, because the particle is spherical, it is not obvious whether the rheo-
tactic state is stable against perturbations of the orientation vector out of the shear
plane. In order to proceed from this intuitive picture to a quantitative investigation,
the equations of motion for the particle position and orientation can be constructed
by linear superposition. As discussed in Ref. [78], the full problem can be divided into
two subproblems. In the first subproblem, an active spherical particle moves via self-
diffusiophoresis through a quiescent fluid near a planar surface. This subproblem has
been already solved in Sect. 3. In the second subproblem, a passive sphere is driven
by an external shear flow near a planar surface. This subproblem has been solved by
Brenner et al. [82]. The equations describing the motion of the self-diffusiophoretic
particle exposed to the external flow are then obtained by summing the correspond-
ing contributions to the translational and rotational velocities from each subproblem
(i-e., following from linear superposition). With the full equations at hand, one can
examine, via linearization, the stability of the rheotactic state against out-of-plane
rotations of the orientation vector. Within this approach, it was shown that, in fact,
the near-surface self-diffusiophoresis of a spherical particle can stabilize a rheotac-
tic state if, in that state, the particle is oriented upstream and towards the surface.
This criterion matches the situation depicted in Fig. 4(a, right), and the numerical
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integration of the equations of motion confirms that a hoverer can indeed exhibit
rheotaxis, as illustrated by the trajectory shown in Fig 4(b).

5 Concluding remarks

These succinct notes on the self-diffusiophoretic motion of chemically active parti-
cles are supposed to capture a significant part of the complexity and richness of this
topic. Due to the limited space, various interesting aspects and results have not been
addressed. Here we list some of these issues, also covered by the references provided.
(i) The effects of thermal fluctuations, leading to rotational diffusion of the colloid,
have not been analyzed. As discussed, e.g., in Refs. [7,36,83] for particles with ax-
ial symmetry (in which case self-diffusiophoresis leads only to translation), due to
rotational diffusion of the axis of symmetry the motion crosses over from a ballistic
regime at timescales shorter than the rotational diffusion time of the particle to diffu-
sion with an “activity enhanced” effective diffusion coefficient at long times. (i) The
simple model analyzed in Sect. 2 for a Janus sphere predicts a velocity which is inde-
pendent of the size of the colloid. References [38,40] show that this result is the zeroth
order term of the solution for surface films of non-vanishing thickness. This means that
corrections in §/R become important as the radius of the colloid decreases [84]. Ref-
erence [37] has shown that accounting for chemical kinetics which are not completely
reaction-limited, i.e., Da # 0, also leads to a dependence of the phoretic velocity
on the particle size; this theoretically predicted dependence agrees well with the ex-
perimental observations. (iii) The dimer model (i.e., a fully catalytic sphere rigidly
connected to an inert one) introduced in Ref. [32] (see also, e.g., Refs. [33,35,44]), is
sufficiently simple to allow for analytic solutions. It reveals the strong effects which the
shape of the particle can have on the emerging solute density gradients. It highlights
the complex nature of the hydrodynamic flows associated with self-diffusiophoresis.

We conclude by mentioning two interesting areas which so far have been less
explored. First, little is known about the behavior of chemically active particles near
or at soft interfaces. The interplay between the chemical activity and the response of a
soft interface may lead to a very rich phenomenology [46,48,55,79]. Second, we expect
that self-diffusiophoresis of chemically active colloids in complex fluids (e.g., liquid
crystals, or visco-elastic liquids) could become another topic of increasing interest,
motivated by applications towards biology or chemical engineering.
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