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Abstract. In this paper we consider dynamics of three unidirectionally
coupled Duffing oscillators with nonlinear coupling function in the form
of third degree polynomial. We focus on the influence of the coupling
on the occurrence of different bifurcation’s scenarios. The stability of
equilibria, using Routh-Hurwitz criterion, is investigated. Moreover, we
check how coefficients of the nonlinear coupling influence an appearance
of different types of periodic solutions. The stable periodic solutions are
computed using path-following. Finally, we show the two parameters’
bifurcation diagrams with marked areas where one can observe the
coexistence of solutions.

1 Introduction

In recent years, the dynamics of coupled nonlinear oscillators become one of widely
investigated topic with a lot of applications in different field of science. In networks
of coupled systems we can distinguish two main coupling schemes. The first one is a
global coupling, where all-to-all coupling is present, hence the oscillators are connected
with each other by direct links or by the mean field [1–4]. The second type is a local
coupling, where the single oscillator is connected to nodes in its nearest neighborhood
[5–10]. In this work we consider the local coupling. Let us now present now the
classification of possible local coupling schemes. The first indicator is the direction of
signal. The interchange of signal can be bidirectional (both coupled nodes exchange
informations). This type of coupling occurs in mechanical and structural systems,
where the action always precedes reaction. Nevertheless, it is also present in electrical,
biological and social systems [11–15]. Contrary to aforementioned scheme, the signal
can be transmitted from one system to another without receiving the feedback. This
type of coupling is called unidirectional. It is common for lasers, neurons and electrical
systems [16–19].
In [20] authors take into account three coupled Lorenz systems. They show the

existence of rotating waves, visible as a phase relation between coupled systems. In
case of simplest periodic rotating waves all coupled systems follow same trajectory
with constant, uniformly spaced phase shifts. This relation preserves even in chaotic
regime (chaotic rotating waves). Afterwards, a detailed study of unidirectional coupled
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Stuart-Landau oscillators was provided in [21,22]. The analysis describe an analyti-
cal method to investigate the behavior of equilibrium and periodic solutions. In our
recent paper we consider dynamics of non-linearly coupled Toda oscillators [23]. The
destabilization of steady state may occur by sub- or supercritical Hopf bifurcation,
while periodic solutions lose stability via period doubling, Neimark-Saker or saddle-
node bifurcations. Hence, based on type of coupling function we can enforce different
types of systems’ dynamics.
In this paper we show the dependence of bifurcation scenarios on the coefficients

of coupling. As a node system we take a Duffing systems and we create the ring
consists of the single, identical systems. The Duffing oscillators are coupled via non-
linear function. We show that proper choice of coupling coefficients may lead to given
bifurcations scenario.
The paper is organized as follows: in Sect. 2 we introduce the investigated system.

Section 3 is devoted to stability analysis of steady states. The path following of
periodic solutions is shown in Sect. 4. The results presented in paper are concluded
in Sect. 5.

2 Model of the system

We consider three autonomous Duffing oscillators. The subsystems are unidirection-
ally coupled with left neighbor of each. The system is given by following first order
ODEs: {

ẋj = yj
ẏj = −dyj − αxj − x3j + γC(xj−1)

(1)

where j = 1, 2, 3, α > 0, d > 0 and γ ≥ 0 is a coupling coefficient. As the oscillators
are linked in a ring, xj−1 should be thought of as x3 for j = 1.
Coupling function is nonlinear and is given by following third degree polynomial:

C(xj−1) = k1xj−1 + k2x2j−1 + k3x3j−1, where k1 > 0. In our work we investigate the
influence of parameters k1, k2 and k3 on bifurcations’ scenarios present in the system.

3 Analysis of steady states

In this section we investigate the existence and stability of equilibria. We show the
complete analytical analysis of scenarios of stabilization and destabilization of steady
states. We present how parameters influence the appearance of different types of
bifurcations. Moreover, we use l’Hopital’s rule to find asymptotes for equilibria and
we apply Routh-Hurwitz criterion to investigate stability.

Equilibrium positions. The system (1) has three equilibria, which are possible to
calculate. Three subsystems are at the same position x1,2,3 = x0 or x1,2,3 = x01 or
x1,2,3 = x02, which are given by following formulas:

x0 = 0 and x01,02 =
−γk2 ±

√
γ2k22 − 4(γk3 − 1)(γk1 − α)
2(γk3 − 1)

and their velocities are equal to zero (y1,2,3 = 0) for all steady states. For simplicity
of notation, we identify x0,01,02 with (xj , yj) = (x0,01,02, 0) (j = 1, 2, 3).



Temporal and Spatio-Temporal Dynamic Instabilities 2625

Eigenvalue analysis for x0. In the case of equilibrium x0 we perform the stability
analysis analytically. Eigenvalues of this steady state are given by:

λ±j (γ) = −
d

2
±
√(
d

2

)2
− α+ k1γ exp

(
2πji

3

)
, (2)

where j = 1, 2, 3. This formula remains true for every other coupling function, for
which C ′(0) = k1 �= 0. Coefficients k2 and k3 do not influence stability of x0 equilib-
rium, because they do not appear in the linearized system.
From λ+j (γ) only λ

+
3 (γ) can be equal to zero, because only then exp

(
2πji
3

)
becomes

real value

(
λ+3 (γ) = −d2 +

√(
d
2

)2 − α+ k1γ
)
. Equating λ+3 (γ) to zero, we find γS =

α
k1
for which stationary bifurcation occurs.
Now, we will show that the real parts of the rest of eigenvalues are negative. The

characteristic polynomial for Jacobian matrix of system (1) for equilibrium x0 at
point γS is given by: P (η) = η(η + d)(η

4 + 2η3d+ (d2 + 3α)η2 + 3dηα+ 3α2).
Equating P (η) to zero, we get that η1 = 0, η2 = −d and η3,4,5,6 are the roots of

fourth degree polynomial:

η4 + 2η3d+ (d2 + 3α)η2 + 3dηα+ 3α2. (3)

In order to determine if polynomial (3) is stable (i.e. it’s roots have negative real
parts), we use Routh-Hurwitz stability criterion, which implies that polynomial:
a4z

4 + a3z
3 + a2z

2 + a1z + a0 is stable if and only if

Δ1 =
∣∣a1∣∣ > 0, Δ2 =

∣∣∣∣a1 a0a3 a2

∣∣∣∣ > 0, Δ3 =
∣∣∣∣∣∣
a1 a0 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣ > 0, Δ4 =
∣∣∣∣∣∣∣
a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

∣∣∣∣∣∣∣ > 0.

For polynomial (3): Δ1 = 3αd > 0, Δ2 = 3αd(d
2+α) > 0, Δ3 = Δ4 = 3d

2α(2d2−α).
Both Δ3 and Δ4 are positive real numbers only if α < 2d

2. In conclusion, we showed
that all real parts of eigenvalues for equilibrium x0 at point γS are negative (despite
the one equal zero responsible for bifurcation) unless α > 2d2.
Let us assume that α < 2d2. Then, as λ+3 (γ) is real valued function, we examine

its derivative obtaining that λ+3 (γ) is strictly increasing function. In a consequence
at point γ = γS λ

+
3 (γ) change its sign from negative to positive. Moreover as all

the other λ±j (γ) are continuous functions, we know that in a certain neighborhood of
γ = γS their real part is negative. Hence x0 looses its stability at γ = γS.
The other occurring bifurcation for steady state x0 is the Hopf bifurcation, in

which the small-amplitude limit cycle is born. Conditions Re(λ±j ) = 0 and Im(λ
±
j ) =

ω > 0 for Hopf bifurcation are fulfilled only for λ+1 and γ = γH. We search the value

of γH by solving equation λ
+
1 = iω and obtaining that γH =

1
3k1

(
1 +

√
d2+12α
d

)
d2

and ω =
√
3
6

(
1 +

√
d2+12α
d

)
d.

Conjugate condition Re(λ±j ) = 0 and Im(λ
±
j ) = −ω is fulfilled by λ+2 and γ = γH.

Defining a function B(d, α) = γH− γS and analyzing its sign, one may find which
bifurcation, stationary or Hopf, occurs as first one. If α < 2d2 the bifurcation in which
x0 loses its stability is stationary bifurcation. If α > 2d

2 than the destabilization is
caused by the Hopf bifurcation. This confirms the earlier results obtained from Routh-
Hurwitz stability criterion.
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Fig. 1. The behavior of function f(γ) satisfying the following conditions: (a) Case (1):
k22 − 4k1k3 > 0, (b) Case (2): k22 − 4k1k3 < 0, (c) Case (3): k22 − 4k1k3 = 0, (d) Case (4):
γ1 = γ2.

In the paragraphs: “Existence of x01 and x02”, “Asymptote” and “Condition for
pitchfork bifurcation” we divide the space of parameters into following areas (cases):

Case (1): k22 − 4k1k3 > 0,
Case (2): k22 − 4k1k3 < 0,
Case (3): k22 − 4k1k3 = 0,
Case (4): γ1 = γ2 ⇔ k3α− k1 = 0 ∧ k2 = 0,
Case (5): k3α− k1 > 0 ∧ k2 = 0,
Case (6): k3α− k1 < 0 ∧ k2 = 0.

Existence of x01 and x02. Equilibrium points x01 and x02 occur only if the function
f : R→ R, given by: f(γ) = (γ2k22−4(γk3−1)(γk1−α)) = (k22−4k1k3)γ2+4(k3α+
k1)γ − 4α, is greater than zero, because only then x01 and x02 are real numbers.
We will investigate the behavior of f(γ), which is quadratic function of the variable

γ. This way we will find out for which parameters γ equilibrium points x01 and x02
exist.
Let us notice that:

f(γ) = 0⇐⇒
γ1 =

−2(k3α+ k1)− 2
√
(k3α+ k1)2 + α(k22 − 4k1k3)
k22 − 4k1k3

∧

γ2 =
−2(k3α+ k1) + 2

√
(k3α+ k1)2 + α(k22 − 4k1k3)
k22 − 4k1k3

.

γ1,2 are always real numbers, because the term under the root is always positive:

(k3α+ k1)
2 + α(k22 − 4k1k3) = (k3α− k1)2 + αk22 ≥ 0.

The fact that γ1,2 are always real numbers means that there always exists a
bifurcation parameter for which equilibrium points occur.
Investigating the behavior of function f(γ) we consider three cases concerning the

sign of denominator of expressions for γ1,2 (Case (1–3)) and the case when γ1 = γ2
(Case (4)). The shape of function f(γ) depending on aforementioned cases is presented
in Fig. 1.
Case (1): k22 − 4k1k3 > 0. In that case the graph of quadratic function f(γ) is a

convex parabola (Fig. 1(a)). Hence, f(γ) ≥ 0 if and only if γ ∈ [γ2,∞). What means
that for γ ∈ [γ2,∞) there exist two extra fixed points x01 and x02. Moreover γ1 < 0,
because (−(k3α + k1) −

√
(k3α+ k1)2 + α(k22 − 4k1k3)) < 0 and γ2 > 0, because

(−(k3α+ k1) +
√
(k3α+ k1)2 + α(k22 − 4k1k3)) > 0.

Case (2): k22 − 4k1k3 < 0. The graph is concave parabola (Fig. 1(b)). This gives
that f(γ) ≥ 0 if and only if γ ∈ [γ2, γ1]. Hence, extra two fixed points x01 and x02
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exist when γ ∈ [γ2, γ1]. What might be also easily seen γ2 > 0, because k22−4k1k3 < 0,
and therefore (−(k3α+ k1) +

√
(k3α+ k1)2 + α(k22 − 4k1k3)) < 0.

Case (3): k22 − 4k1k3 = 0. In that case function f takes the form of linear function
f(γ) =

(
k22
k1
α+ 4k1

)
γ − 4α (Fig. 1(c)). Since k22

k1
α+ 4k1 > 0, f is the increasing and

that gives us that f is positive for γ ∈ [γ∗,∞), where γ∗ = 4k1α
k22α+4k

2
1
. In a consequence

two extra fixed points x01 and x02 occur for γ ∈ [γ∗,∞).
Case (4): γ1 = γ2. This case is presented in Fig. 1(d). Assuming that γ1 = γ2, we

get (k3α+ k1)
2 + α(k22 − 4k1k3) = (k3α− k1)2 + αk22 = 0, what means that k3 = k1

α

and k2 = 0. In a consequence k
2
2 − 4k1k3 = −4k

2
1

α
< 0 and γ1 = γ2 =

α
k1
= 1
k3
.

The solutions obtained for k2 = 0, k3 =
k1
α
and γ = α

k1
are trivial and equal

x01 = x02 = 0.

Asymptote. For equilibria x01 and x02 there might occur an asymptote, what means
that one or two equilibria escape to infinity (blow up). In this section we present under
what conditions and for which equilibrium asymptote occur. If asymptote is present,
it exists for γ = 1/k3. Let us assume that k2 > 0. Calculating the limit of x01,02 with
γ tending to 1/k3 we use l’Hopital’s rule, obtaining:

limγ→ 1
k3

x01(γ)
H
= −1
2

k2

k3
+

|k3|
(
1

2

k22
k23
− k1
k3
+ α

)
k2

,

limγ→ 1
k3

x02(γ) = limγ→ 1
k3

−γk2 −
√
γ2k22 − 4(γk3 − 1)(γk1 − α)
2(γk3 − 1) =∞.

Assuming k2 < 0. Then

limγ→ 1
k3

x01(γ) = limγ→ 1
k3

−γk2 +
√
γ2k22 − 4(γk3 − 1)(γk1 − α)
2(γk3 − 1) =∞,

limγ→ 1
k3

x02(γ)
H
= −1
2

k2

k3
+

|k3|
(
1

2

k22
k23
− k1
k3
+ α

)
k2

.

If k2 = 0, then

limγ→ 1
k3

x01,02(γ) = limγ→ 1
k3

√
−(γk1 − α)
(γk3 − 1) =∞.

Now, we examine under which conditions asymptote occurs. The behavior of
the system is investigated for γ ∈ [0,∞), that is why for k3 ≤ 0 we do not obtain
asymptote. Assuming that k3 > 0, we examine three cases:

Case (1): k22−4k1k3 > 0. We will show that asymptote always occurs in that case,
what means that 1

k3
> γ2.

1

k3
> γ2 =

−2(k3α+ k1) + 2
√
(k3α+ k1)2 + α(k22 − 4k1k3)
k22 − 4k1k3

⇔

⇔ k
2
2 − 4k1k3
k3

+ 2(k3α+ k1) > 2
√
(k3α+ k1)2 + α(k22 − 4k1k3).
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Fig. 2. Equilibria x01 (green color) and x02 (red color) for k1 = 1 and (a) k2 = 3, k3 = −2
(k3 < 0 – asymptote does not occur), (b) k1 = 1, k2 = 3, k3 = 2 (Case (1)), (c) k1 =
1, k2 = 1, k3 = 2 (Case (2)), (d) k1 = 1, k2 = 2, k3 = 1 (Case (3)). For (b–d) k3 > 0, so
the asymptote occurs.

Both sides are positive real numbers, hence we may square both sides of inequality

and after simple transformations we obtain:
(
k22−4k1k3
k3

)
+4k1 > 0, what is true is our

case. Hence for 0 < k3 <
k22
4k1
asymptote occurs.

Case (2): k22 − 4k1k3 < 0. In this case the existence of asymptote is equivalent to
fulfilling condition γ2 <

1
k3
< γ1. Hence:

(
k22−4k1k3
k3

)2
+4(k3α+k1)

k22−4k1k3
k3

+4(k3α+

k1)
2 < 4(k3α+ k1)

2 + 4α(k22 − 4k1k3) and k
2
2

k3
> 0.

Hence in this case asymptote occurs for γ ∈ (γ2, γ1) unless k2 = 0. For k2 = 0
asymptote occurs for γ1 or γ2.
Case (3): k22 − 4k1k3 = 0. This scenario always include asymptote, because:

1

k3
=
4k1
k22
>

4k1α

k22α+ 4k
2
1

= γ∗.

In Figs. 2(a–d) we present solutions x01,02 and asymptotes depending on afore-
mentioned Cases for representative values of parameters k1, k2 and k3.

Condition for pitchfork bifurcation. For bifurcation parameter γ = γS, we have
transcritical bifurcation if γ∗ < γS (case k22−4k1k3 = 0), γ2 < γS (case k22−4k1k3 > 0)
or γ2 < γS < γ1 (case k

2
2 − 4k1k3 < 0). Situations γ∗ > γS and respectively γ2 > γS,

γS ∈ (−∞, γ2) ∪ (γ1,∞) are obviously impossible.
We focus on finding such k1, k2, k3 for which γ

∗ = γS (γ∗ occurs when k22 −
4k1k3 = 0), γ1 = γS or γ2 = γS (γ1,2 occur when k

2
2 − 4k1k3 �= 0), because then

pitchfork bifurcation will be obtained.

In the first case, we easily obtain that:
4k1α

k22α+ 4k
2
1

= γ∗ = γS =
α

k1
if and only if

k2 = 0.
Analyzing the case γ1 = γS, we get:

γ1 =
−2(k3α+ k1)− 2

√
(k3α+ k1)2 + α(k22 − 4k1k3)
k22 − 4k1k3

=
α

k1
= γS.

What after simple transformation gives:

√
(k3α+ k1)2 + α(k22 − 4k1k3) = −

α(k22 − 4k1k3)
2k1

− (k3α+ k1).
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Fig. 3. Exemplary (a) supercritical (Case (6)) and (b) subcritical (Case (5)) pitchfork
bifurcation for k1 = 1, k2 = 0, k3 = 5 and k1 = 1, k2 = 0, k3 = 20, respectively.

In order to square both sides of equation we need to assume that (k3α− k1) > αk
2
2

2k1
.

After squaring and trivial transformations we obtain that:

(k22 − 4k1k3)k22 = 0.
What means that k2 = 0, since (k

2
2 − 4k1k3) �= 0. Analogous reasoning might be

performed for the case γ2 = γS.
Now, let us conduct implication in another direction assuming that k2 = 0, then:

γ1 =
−2(k3α+ k1)− 2 |k3α− k1|

−4k1k3 , γ2 =
−2(k3α+ k1) + 2 |k3α− k1|

−4k1k3 . Moreover, for

k2 = 0 solutions x01 and x02 are symmetric, i.e. x01 = −x02.
We consider three cases:

Case (4): k3α−k1 = 0 ∧ k2 = 0, which was already analyzed in section “Existence
of x01 and x02” and where we obtained that: γ1 = γ2 = γS.

Case (5): k3α− k1 > 0 ∧ k2 = 0. We have that for γ1 = 1
k3
asymptote occurs and

γ2 =
α

k1
= γS.

Case (6): k3α − k1 < 0 ∧ k2 = 0. For γ1 = α
k1
= γS and for γ2 =

1

k3
we have

asymptote.
This way we proved that pitchfork bifurcation occurs for: k1 > 0, k2 = 0 and

k3 �= k1
α
. For k3 <

k1

α
(Case (6)) the bifurcation is supercritical and for k3 >

k1

α
(Case

(5)) subcritical. Representative shapes of solutions created via pitchfork bifurcation
are presented in Fig. 3.

4 Periodic solutions

In the numerical simulations we choose α = 0.1, d = 0.3, so α < 2d2 and according
to Sect. 3 “Eigenvalue analysis for x0” the first bifurcation destabilizing equilibrium
x0 is stationary one.
The stability of equilibria x01 and x02 is analyzed numerically by investigation

of the signs of maximum real parts of eigenvalues. We present them in Fig. 4(a–d)
on two-parameter diagrams. The black area indicates coexistence of stable x01 and
x02, the coral stands for stable x01 and yellow one for stable x02. When the region is
grey both equilibria are unstable then. Finally, white area means that equilibria do
not occur. The regions, where stable periodic orbits occur are indicated by hatched
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Fig. 4. Unstable and stable regions of equilibria x01 and x02 presented with stable periodic
solutions, for k1 = 1, (a) k2=3, k3 ∈ (−2, 2), (b) k2 ∈ (0, 2) , k3=2, (c) k2 ∈ (0, 2) , k3 = 1,
(d) k2 = 0, k3 ∈ (0, 20). Black area – coexistence of stable x01 and x02, coral – stable x01,
yellow – stable x02, grey – both equilibria are unstable, white – equilibria do not occur,
hatched area – existence of stable periodic orbit. The abbreviations correspond to lines of
following bifurcations: lHB – supercritical Hopf, lSUB−HB – subcritical Hopf, lLP – fold, lNS
– Neimark-Sacker, lPD – period doubling. Codimension-two bifurcations are indicated by:
NSPD (Neimark-Sacker-period-doubling) and LPNS (fold-Neimark-Sacker).

areas. The bifurcation curves presented in this section are obtained using Auto-07p:
Continuation and bifurcation software [24,25].
Equilibria calculated in Sect. 3 are used as the base to the calculation of peri-

odic orbits, as all periodic orbits are created via Hopf bifurcations from equilibria.
Figures 4(a–d) connects equilibria analysis, i.e. Sect. 3 with periodic orbit analysis
(Sect. 4).
Parameters in Fig. 4 are representative values chosen in such a way that they ful-

fill conditions obtained in Sect. 3, i.e. Cases (1–6). Case (1) is presented in Fig. 4(a),
Case (2) in Figs. 4(b, c), Case (3) in Fig. 4(c) for the boundary case k2 = 2, Case
(4) in Fig. 4(d) for k3 ∈ (10, 20), Case (5) in Fig. 4(d) for k3 = 10 and Case (6) in
Fig. 4(d) for k3 ∈ (0, 10). In our investigation we want to show the possible scenarios
of bifurcations’ paths and the chosen range of system’s parameters let us do that.
In each Figs. 4(a–d) the stationary bifurcation, where both x01,02 are born from x0

is indicated by the line lS . All of obtained periodic orbits are created via supercritical
Hopf bifurcations lHB , in which x01 or x02 lose stability. But not only supercritical
Hopf occurs in investigated system, but also subcritical one. In Fig. 4(a) in subcritical
Hopf bifurcation (lSUB−HB line) stable x02 appears. In Fig. 4(c) we may see that x01
loses its stability in the subcritical Hopf bifurcation, since no stable periodic orbit is
born. Now, we know that each equilibria may undergo Hopf bifurcation. In analytical
part we obtained that x0 undergoes a Hopf bifurcation at γH (for the parameters α
and d we chose this bifurcation occurs for unstable x0). Hopf bifurcation of x01 and
x02 is obtained in numerical studies. Finally, whole area where equilibria x01,02 exist
is bounded by lLP line, standing for fold bifurcation.
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In Fig. 4(a) parameter k1 = 1 and k2 = 3 are fixed and k3 is varied. Increas-
ing coupling parameter γ we first meet Hopf bifurcation line, which coincides with
the value of γ2. Created orbit loses it’s stability at period doubling bifurcation for
k3 ∈ (−2, −0.534). For k3 = −0.534 codimension-two bifurcation (the Neimark-
Sacker-period-doubling) occurs. For k3 ∈ (−0.534, 1.77606) periodic orbit bifurcates
via the Neimark-Sacker bifurcation. This scenario is different from k3 = 1.77606 (fold-
Neimark-Sacker bifurcation) to k3 = 2, where the periodic orbit loses it’s stability
in saddle-node bifurcation. Then the stable periodic solution appears, when x01 be-
comes unstable in the next Hopf bifurcation. This periodic orbit loses its stability in
period doubling or Neimark-Sacker bifurcation. The Neimark-Sacker-period-doubling
bifurcation at k3 = −1.753503 is the border between those two bifurcations. Another
periodic orbit is created from x02 and is stable until it does not bifurcates via the
Neimark-Sacker bifurcation.
When we fix k3 = 2 and vary k2 ∈ (0, 2) (Fig. 4(b)) both periodic orbits destabi-

lize in the fold bifurcation.
The results for fixed k3 = 1 and varied k2 ∈ (0, 2) are presented in Fig. 4(c).

Limit cycle obtained from destabilization of x02 is stable until reaching limit point
line (k2 ∈ (0, 0.57765)) or until reaching the Neimark-Sacker line (k2 ∈ (0.57765, 2)).
Periodic orbit created in the Hopf bifurcation from x01 loses stability in the Neimark-
Sacker bifurcation.
The last Fig. 4(d) shows behavior of the system in the case of pitchfork bifurcation

of equilibria. For k3 ∈ (0, 4.44924) the symmetrical limit cycles , created from sym-
metrical equilibria x01 and x02, destabilize via fold bifurcation. For k3 ∈ (4.44924, 10)
loss of stability occurs due to the Neimark-Sacker bifurcation. When k3 ∈ (10, 20)
equilibria are unstable and none stable periodic orbit is born.
Figures 5, 6 and 7 present bifurcation scenarios of equilibria and limit cycles in

one-parameter plots, which are intersections of diagrams in Figs. 4(a–d).
The continuation in Figs. 5(a–d) corresponds to the line k3 = −2 in Fig. 4(a)

and the bifurcations are confirmed to occur in that particular order. The inter-
esting detail in this scenario is heteroclinic bifurcation. In Fig. 5(b) one may see
that bifurcation curve undergo many fold bifurcations before ending at a hete-
roclinic bifurcation. For γ = 0.80852 period of the limit cycle tends to infinity
and that is the point where bifurcation occurs (Fig. 5(c)). The phase portrait of
considered orbit is presented in Fig. 5(d), we marked by dots unstable equilib-
rium (x1,2,3 = −0.2795, −0.0115, −0.0839) which is connected by heteroclinic or-
bit. Branch of steady states emerging from this equilibrium is mainly unstable. With
increasing of γ the stability is not changed, but with decreasing of γ we observe a
saddle-node bifurcation for γ = 0.6436, where the stable part appears but it destabi-
lizes in Hopf bifurcation for γ = 0.6441 (it is stable in very narrow range). The Hopf
bifurcation is supercritical, hence the stable periodic appears. For slightly larger value
of γ it loses stability in Neimark-Sacker bifurcation (γ = 0.6443). We can reach those
solutions only with very precise initial conditions, hence from practical point of view
they importance is negligible and we decided to do not present them in our analysis.
indent Figure 6(a) is the intersection of Fig. 4(a) for k3 = 2. Equilibrium x0 is
stable until γ = 0.1, where in transcritical bifurcation it loses stability and stable
x01 is created. With increase of bifurcation parameter, we reach point γ = 0.69335,
where in Hopf bifurcation stable limit cycle is created, which becomes unstable in
Neimark-Sacker bifurcation at γ = 0.96989. Following unstable x01 from γ = 0.1 with
decreasing γ, we reach limit point at γ = 0.081935, where stable x02 appears. Created
x02 loses stability at γ = 0.082415 at Hopf bifurcation. Appeared stable limit cycle
becomes unstable at the limit point at γ = 0.12235.
Dynamics of system for parameters k1 = 1, k2 = 1, k3 = 2 is presented in

Fig. 6(b), which is intersection of Fig. 4(b) for k2 = 1. Solution x0 loses stability
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Fig. 5. (a) Continuation of periodic solutions for k1 = 1, k2 = 3, k3 = −2 (Case (1)
with k3 < 0, i.e. asymptote does not occur), (b, c) heteroclinic bifurcation. In (c) red point
indicates value for which phase portrait of heteroclinic orbit (d) is plotted. In (d) green, blue
and red points stand for unstable equilibrium x1,2,3 = −0.2795, −0.0839, −0.0115.
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Fig. 6. Continuation of periodic solutions for k1 = 1 and: (a) k2 = 3, k3 = 2 (Case (1)), (b)
k2 = 1, k3 = 2 (Case (2)). For (a),(b) k3 > 0, so the asymptote occurs.

at γ = 0.1 in transcritical bifurcation. Newly created x01 is stable with increasing
γ and unstable with decreasing γ. The stable branch of x01 becomes unstable at
γ = 0.25875, where in Hopf bifurcation stable periodic orbit appears. Following pe-
riod orbit we reach the limit point at γ = 0.26117, where it lose stability. Following
unstable periodic solution we find another Hopf bifurcation at γ = 0.14358, in which
periodic orbit is born from equilibrium x0. The unstable branch of x01 (i.e. x01 for
γ < 0.1) exists until limit point is reached at γ = 0.097076. Then, stable x02 is cre-
ated, which preserves it’s stability till γ = 0.11676, where in Hopf bifurcation stable
periodic orbit is born. The stable periodic solution exists till γ = 0.15321, where
another, unstable, solution appears.

The pitchfork bifurcation of x0 occurs for k1 = 1, k2 = 0, k3 = 5 (see Figs. 7(a, b),
which is intersection of Fig. 4(d) for k3 = 5). The stability is lost at the point γ = 0.1
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Fig. 7. (a, b) Continuation of periodic solutions for k1 = 1, k2 = 0 and k3 = 5 <
k1

α
= 10

(supercritical pitchfork bifurcation – Case (6)).

at the pitchfork bifurcation and two stable equilibria x01 and x02 are born. Both x01
and x02 destabilize at γ = 0.11896 in Hopf bifurcation, where the stable limit cycles
are created. The both limit cycles lose stability in the Neimark-Sacker bifurcations at
γ = 0.13394. Following unstable branches we reach limit point at γ = 0.13466. With
further continuation we reach symmetry breaking at γ = 0.13411, where two unstable
branches connect.

5 Conclusions

In this paper we show the variety of bifurcation scenarios, which depend on coef-
ficients in nonlinear coupling. Using analytical approach, we manage to investigate
the existence and stability of equilibria. We show that in considered system we can
observe changes in stability of steady states via the Hopf, pitchfork and transcritical
bifurcations. Appearance of each type of bifurcation is dependent on the parameters
of the coupling function. The stable equilibria coexist in the wide range of coupling’s
parameters.
With increasing the coupling parameter γ we observe destabilization of equilibria

and appearance of periodic solutions via sub- or supercritical Hopf bifurcations. We
merge results obtained in analytical and numerical calculations to show ranges of
existence of stable and unstable steady states and stable periodic solutions. The
destabilization of periodic orbits is also strongly dependent on parameters of the
coupling function. With changes of coefficients k1, k2, k3 we can observe following
types of bifurcations: Hopf, Neimark-Sacker and saddle-node.
In summary, we show that with changing parameters of non-linear coupling func-

tion we can strongly affect the bifurcation scenario of the system and reach given
sequence of bifurcations. Additionally, one can move between regions in parameter
space where the multi-stability exists or does not exist.

This work has been supported by Lodz University of Technology own Scholarship Fund (PJ).
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