Skip to main content
Log in

From mechanical to biological oscillator networks: The role of long range interactions

  • Review
  • Session A: Reviews
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The study of one-dimensional particle networks of Classical Mechanics, through Hamiltonian models, has taught us a lot about oscillations of particles coupled to each other by nearest neighbor (short range) interactions. Recently, however, a careful analysis of the role of long range interactions (LRI) has shown that several widely accepted notions concerning chaos and the approach to thermal equilibrium need to be modified, since LRI strongly affects the statistics of certain very interesting, long lasting metastable states. On the other hand, when LRI (in the form of non-local or all-to-all coupling) was introduced in systems of biological oscillators, Kuramoto’s theory of synchronization was developed and soon thereafter researchers studied amplitude and phase oscillations in networks of FitzHugh Nagumo and Hindmarsh Rose (HR) neuron models. In these models certain fascinating phenomena called chimera states were discovered where populations of synchronous and asynchronous oscillators are seen to coexist in the same system. Currently, their synchronization properties are being widely investigated in HR mathematical models as well as realistic neural networks, similar to what one finds in simple living organisms like the C.elegans worm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Applied Mathematical Sciences, Vol. 38 (Springer, 1992)

  2. G.P. Berman, F.M. Izrailev, Chaos 15, 015104 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ch. Antonopoulos, T. Bountis, V. Basios, Physica A 390, 3290 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Bountis, H. Skokos, Complex Hamiltonian Dynamics, Springer Synergetics series (Springer, Berlin, 2012)

  5. M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Article  ADS  Google Scholar 

  6. V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998)

    Article  ADS  Google Scholar 

  7. C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998)

    Article  ADS  Google Scholar 

  8. T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Notes Phys. 602, 458 (2002)

    Article  ADS  Google Scholar 

  9. V.E. Tarasov, G.M. Zaslavsky, Commun. Nonlinear Sci. Numer. Simul. 11, 885 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. K.A. Takeuchi, H. Chaté, F. Ginelli, A. Politi, A. Torcini, Phys. Rev. Lett. 107, 124101 (2011)

    Article  ADS  Google Scholar 

  11. F. Ginelli, K.A. Takeuchi, H. Chaté, A. Politi, A. Torcini, Phys. Rev. E 84, 066211 (2011)

    Article  ADS  Google Scholar 

  12. Th. Manos, S. Ruffo, Trans. Theor. Stat. Phys. 40, 360 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Christodoulidi, C. Tsallis, T. Bountis, EPL 108, 40006 (2014)

    Article  ADS  Google Scholar 

  14. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)

  15. H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, Chaotic behavior of the Fermi–Pasta–Ulam β–model with different ranges of particle interactions (submitted) (2015)

  16. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization – A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

  17. S. Boccaletti, J. Kurths, G.V. Osipov, D. Valladares, C. Zhou Phys. Rep. 366, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.T. Winfree, J. Theor. Biol. 28, 327374 (1967)

    Google Scholar 

  19. J.A. Acebron, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigleri, Rev. Mod. Phys. 77, 138 (2005)

    Article  ADS  Google Scholar 

  20. Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Sys. 5, 380 (2002)

    Google Scholar 

  21. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  22. D.M. Abrams, R. Mirollo, S. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  23. E. Ott, T.M. Antonsen, Chaos 18, 037113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Hizanidis, V.G. Kanas, A. Bezerianos, T. Bountis, Int. J. Bif. Chaos 24, 1450030 (2014)

    Article  MathSciNet  Google Scholar 

  25. J.L. Hindmarsh, R.M. Rose, Nature, Lond. 296, 162 (1982)

    Article  ADS  Google Scholar 

  26. J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. London, Ser. B 221, 87 (1984)

    Article  ADS  Google Scholar 

  27. C.R. Laing, Phys. Rev. E 81, 066221 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.R. Laing, K. Rajendran, I.G. Kevrekidis, Chaos 22, 013132 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    Article  ADS  Google Scholar 

  30. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  31. A.M. Hagerstrom, E. Thomas, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  32. N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)

    Article  Google Scholar 

  33. C.G. Mathews, J.A. Lesku, S.L. Lima, C.J. Amlaner, Ethology 112, 286 (2006)

    Article  Google Scholar 

  34. I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)

    Article  ADS  Google Scholar 

  35. E.A. Martens, S. Thutupalli, A. Fourriére, O. Hallatschek, Proc. Natl. Acad. Sci. 110, 10563 (2013)

    Article  ADS  Google Scholar 

  36. C.R. Laing, Chaos 19, 013113 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.R. Laing, Chaos 22, 043104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Bountis, V.G. Kanas, J. Hizanidis, A. Bezerianos, Eur. Phys. J. Special Topics 223, 721 (2014)

    Article  ADS  Google Scholar 

  39. C.G. Antonopoulos, A.S. Fokas, T. Bountis, Eur. Phys. J. Special Topics 225, 1255 (2016)

    Google Scholar 

  40. J. Hizanidis, N. Kouvaris, G. Zamora-Lopéz, A. Díaz-Guilera, Ch. Antonopoulos, Chimera-like dynamics in modular neural networks, Scientific Reports 6, 19845 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bountis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bountis, T. From mechanical to biological oscillator networks: The role of long range interactions. Eur. Phys. J. Spec. Top. 225, 1017–1035 (2016). https://doi.org/10.1140/epjst/e2016-02652-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02652-5

Navigation