Skip to main content
Log in

Complexity methods applied to turbulence in plasma astrophysics

  • Review
  • Session A: Reviews
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the observed time series of the explosive events, (d) finally, when the AR reaches the turbulently reconnecting state (in the language of the SOC theory this is called SOC state) it is densely populated by UCS which can act as local scatterers (replacing the magnetic clouds in the Fermi scenario) and enhance dramatically the heating and acceleration of charged particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Abramenko, Sol. Phys. 228, 29 (2005)

    Article  ADS  Google Scholar 

  2. T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, ApJ 595, 1231 (2003)

    Article  ADS  Google Scholar 

  3. J. Ambrosiano, W.H. Matthaeus, M.L. Goldstein, D. Plante, J. Geoph. Res. 93, 14383 (1988)

    Article  ADS  Google Scholar 

  4. A. Anastasiadis, L. Vlahos, M.K. Georgoulis, ApJ 428, 819 (1994)

    Article  ADS  Google Scholar 

  5. V. Archontis, F. Moreno-Insertis, K. Galsgaard, A. Hood, E. O’ Shea, A&A 426, 1047 (2004)

    Article  ADS  Google Scholar 

  6. V. Archontis, A.W. Hood, C. Brady, A&A 46, 367 (2007)

    Article  ADS  Google Scholar 

  7. V. Archontis, A.W. Hood, A. Savcheva, L. Golub, E. DeLuca, ApJ 691, 1291 (2009)

    Article  ADS  Google Scholar 

  8. K. Arzner, L. Vlahos, L., ApJ 605, L69 (2004)

    Article  ADS  Google Scholar 

  9. K. Arzner, B. Knaepen, D. Carati, N. Denewet, L. Vlahos, ApJ 637, 322 (2006)

    Article  ADS  Google Scholar 

  10. M. Aschwanden, et al., SSRv 198, 47, (2014)

    ADS  Google Scholar 

  11. M. Aschwanden, Self-Organized Criticality in Astrophysics (Springer-Verlag, Berlin, 2011)

  12. G. Aulanier, E. Pariat, P. Demoulin, A&A 444, 961 (2005)

    Article  ADS  Google Scholar 

  13. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.C. Balke, C.J. Schrijver, C. Zwaan, T.D. Tarbell, Sol. Phys. 143, 215 (1993)

    Article  ADS  Google Scholar 

  15. M. Barta, J. Brüchner, M. Karlicky, P. Kotrc, ApJ 730, 47 (2011)

    Article  ADS  Google Scholar 

  16. G. Baumann, AA. Nordlund, ApJ 759, 5 (2012)

    Article  ADS  Google Scholar 

  17. D. Biskamp, H. Welter, Phys. Fluids B 1, 1964 (1989)

    Article  ADS  Google Scholar 

  18. J.T. Bogdan, Phys. Fluids 27, 994 (1984)

    Article  ADS  Google Scholar 

  19. J.T. Bogdan, ApJ 299, 510 (1985)

    Article  ADS  Google Scholar 

  20. J.T. Bogdan, I. Lerche, ApJ 296, 719 (1985)

    Article  ADS  Google Scholar 

  21. E. Buchin, M. Velli, ApJ 662, 701 (2007)

    Article  ADS  Google Scholar 

  22. P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, AA. Nordlund, SSRev 173, 223 (2012)

    ADS  Google Scholar 

  23. P. Charbonneau, S.W. McIntosh, H.L. Liu, T.J. Bogdan, Sol. Phys. 203, 321 (2002)

    Article  ADS  Google Scholar 

  24. B. Chopard, M. Droz, Celular Automata Modelling of Physical Systems (Cambridge University Press, Oxford, 2005)

  25. N.B. Crosby, M.J. Aschwanden, B.R. Dennis, Sol. Phys. 143, 257 (1992)

    Google Scholar 

  26. R.B. Dahlburg et al., ApJ 622, 1191 (2005)

    Article  ADS  Google Scholar 

  27. R.B. Dahlburg, G. Eunaudi, A.F. Rappazzo, M. Valli, A&A 544, L20 (2012)

    Article  ADS  Google Scholar 

  28. J.T. Dahlin, J.F. Drake, M. Swisdak, Phys. Plasmas 22, 100704 (2015)

    Article  ADS  Google Scholar 

  29. P. Démoulin, Adv. Space Res. 39, 1367 (2007)

    Article  ADS  Google Scholar 

  30. M. Dimitropoulou, M. Georgoulis, H. Isliker, L. Vlahos, A. Anastasisadis, D. Strintzi, X. Mousas, A&A 505, 1245 (2009)

    Article  ADS  Google Scholar 

  31. M. Dimitropoulou, H. Isliker, L. Vlahos, M. Georgoulis, A&A 529, 101 (2011)

    Article  ADS  Google Scholar 

  32. M. Dimitropoulou, H. Isliker, L. Vlahos, M. Georgoulis, A&A 553, 65 (2013)

    Article  ADS  Google Scholar 

  33. P. Dmitruk, D.O. Gomez, E.E. DeLuca, ApJ 505, 974 (1998)

    Article  ADS  Google Scholar 

  34. P. Dmitruk, W.H. Matthaeus, N. Seenu, M.R. Brown, ApJ 597, L81 (2003)

    Article  ADS  Google Scholar 

  35. P. Dmitruk, W.H. Matthaeus, N. Seenu, ApJ 617, 667 (2004)

    Article  ADS  Google Scholar 

  36. J.D. Drake, M. Swisdak, H. Che, M. A. Shay, Nature 443, 553 (2006)

    Article  ADS  Google Scholar 

  37. G. Eunaudi, M. Velli, Phys. Plasmas 6, 4146 (1999)

    Article  ADS  Google Scholar 

  38. K. Falconer, Fractal Geometry (John Wiley, Chichester, 1990)

  39. Y. Fan, ApJ 697, 1529, (2009)

    Article  ADS  Google Scholar 

  40. Y. Fan, Living Rev. Solar Phys. 6, 4, (2009)

    Article  ADS  Google Scholar 

  41. T. Fragos, M. Rantziou, L. Vlahos, A&A 420, 719 (2003)

    Article  ADS  Google Scholar 

  42. J. Fröhlich, D. Ruelle, Comm. Math. Phys. 87, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Galsgaard, A&A 315, 312 (1996)

    ADS  Google Scholar 

  44. K. Galsgaard, AA. Nordlund, J. Geoph. Res. 102, 231 (1997)

    Article  ADS  Google Scholar 

  45. K. Galsgaard, F. Moreno-Insertis, V. Archontis, A. Hood, ApJ 618, L153 (2005)

    Article  ADS  Google Scholar 

  46. K. Galsgaard, V. Archontis, F. Moreno-Insertis, A.W. Hood, ApJ 666, 516 (2007)

    Article  ADS  Google Scholar 

  47. M.K. Georgoulis, L. Vlahos, ApJ 469, L135 (1996)

    Article  ADS  Google Scholar 

  48. M.K. Georgoulis, L. Vlahos, A&A 336, 721 (1998)

    ADS  Google Scholar 

  49. M.K. Georgoulis, M. , Velli, G. Eunaudi, ApJ 497, 957 (1998)

    Article  ADS  Google Scholar 

  50. M.K. Georgoulis, Sol. Phys. 228, 5 (2005)

    Article  ADS  Google Scholar 

  51. M.K. Georgoulis, Solar Phys. 276, 161 (2012)

    Article  ADS  Google Scholar 

  52. D.T. Gillespie, Phys. Rev. E 54, 2084 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Gordovsyy, P.K. Browning, ApJ 729, 101 (2011)

    Article  ADS  Google Scholar 

  54. K.L. Harvey, C. Zwaan, Sol. Phys. 148, 85 (1993)

    Article  ADS  Google Scholar 

  55. J. Holland, Hidden order: How adaptation builds complexity (Perseus, Cambridge, M, 1995)

  56. A.W. Hood, P.J. Cargill, P. Browning, P.K.K.V. Tam, ApJ (in press) (2016)

  57. M. Hoshino, Phys. Rev. Lett. 108, 135003 (2012)

    Article  ADS  Google Scholar 

  58. D.W. Hughes, J.G. Wissink, P.C. Matthews, M.R.E. Proctor, in Advances in the Physics of Sunspots, edited by B. Schmieder, J.C. del Toro Iniesta and M. Vazquez (2005), p. 66

  59. H. Isliker, A. Anastasiadis, D. Vassiliadis, L. Vlahos, A&A 363, 1134 (1998)

    ADS  Google Scholar 

  60. H. Isliker, A. Anastasiadis, L. Vlahos, A&A 363, 1134 (2000)

    ADS  Google Scholar 

  61. H. Isliker, A. Anastasiadis, L. Vlahos, A&A 377, 1068 (2001)

    Article  ADS  Google Scholar 

  62. H. Isliker, L. Vlahos, Phys. Rev. E 67, 026413 (2003)

    Article  ADS  Google Scholar 

  63. H. Isliker, L. Vlahos, Y. Kominis, K. Hizanidis, eprint [arXiv:0805.0419] (2008)

  64. H.J. Jensen, Self-Organizsd Criticality: Emergent Complex Behaviour in Physical and Biological Systems (Campridge University Press, Oxford, 1998)

  65. H. Karimabadi, et al., Phys. Plasmas 20, 012303 (2013)

    Article  ADS  Google Scholar 

  66. C.F. Karney, Comput. Phys. Rep. 4, 183 (1986)

    Article  ADS  Google Scholar 

  67. J.A.S. Kauffman, At home in the universe (Oxford, New York, 1995)

  68. J.A.S. Kelso, Dynamic Paterns: The self-organization of brain and behavior (MIT Press, Cambridge, M, 1995)

  69. G. Kowal, E.M. de Gouveia Dal Pino, A. Lazarian, ApJ 735, 102 (2011)

    Article  ADS  Google Scholar 

  70. J.K. Lawrence, A.A. Ruzmaikin, A.C. Cadavid, ApJ 417, 805 (1993)

    Article  ADS  Google Scholar 

  71. J. K. Lawrence, Sol. Phys. 135, 249 (1991)

    Article  ADS  Google Scholar 

  72. J.K. Lawrence, C.J. Schrijver, ApJ 411, 402 (1993)

    Article  ADS  Google Scholar 

  73. A. Lazarian, E. Vishniac, ApJ 517, 700 (1999)

    Article  ADS  Google Scholar 

  74. A. Lazarian, L. Vlahos, G. Kowal, H. Yan, A. Beresnyak, E.M. Gouveia Dal Pinto, SSRev 173, 557 (2012)

    ADS  Google Scholar 

  75. A. Lenard, J.B. Bernstein, Phys. Rev. 112, 1456 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  76. R.P. Lin, R.P., R.A. Schwartz, S.R. Kane, R.M. Pelling, C.C. Hurly, ApJ 285, 421 (1984)

    Article  ADS  Google Scholar 

  77. D.W. Longcope, Living Rev. Solar Phys. 2, 7 (2005)

    Article  ADS  Google Scholar 

  78. E.T. Lu, R.J. Hamilton, ApJ 380, L89 (1991)

    Article  ADS  Google Scholar 

  79. E.T. Lu, R.J. Hamilton, J.M. McTiernan, K.R. Bromund, ApJ 412, 841 (1993)

    Article  ADS  Google Scholar 

  80. W.H. Matthaeus, S.L. Lamkin, Phys. Fluids 29, 2513 (1986)

    Article  ADS  Google Scholar 

  81. N. Meunier, ApJ 515, 801 (1999)

    Article  ADS  Google Scholar 

  82. R.T.J. McAteer, P.T. Gallagher, J. Ireland, ApJ 631, 628 (2005)

    Article  ADS  Google Scholar 

  83. A.V. Milovanov, L.M. Zelenyi, Phys. Fluids. B 5, 2609 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  84. F. Moreno-Insertis, in Advances in Physics of Sunspots, edited by. B. Schminder, J.C. del Toro Iniesta and M. Vazquez (1997), p. 45

  85. N. Nishizuka, K. Shibata, Phys. Rev. Lett. 110, 051101 (2013)

    Article  ADS  Google Scholar 

  86. A. Nordlund, K. Galsgaard, in Solar and Heliospheric Plasma Physics, edited by G.M. Simnett, C.A. Allisandrakis, L. Vlahos (Springer Verlag, Berlin, 1997)

  87. M. Onofri, L. Primavera, F. Malara, P. Veltri, Phys. Plasmas 11, 4837 (2004)

    Article  ADS  Google Scholar 

  88. M. Onofri, H. Isliker, L. Vlahos, Phys. Rev. Lett. 96, 151102 (2006)

    Article  ADS  Google Scholar 

  89. K. Papadopoulos, Rev. Geophys. Space Phys. 15, 113 (1977)

    Article  ADS  Google Scholar 

  90. E.N. Parker, ApJ 330, 474 (1988)

    Article  ADS  Google Scholar 

  91. P. Petkaki, M.P. Freeman, ApJ 686, 686 (2008)

    Article  ADS  Google Scholar 

  92. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge, 1992)

  93. R.Z. Sagdeev, in Proceedings in Applied Mathematics 18, edited by H. Grad (Providence: Am. Math. Soc.) (1967), p. 28

  94. C.J. Schrijver, C. Zwaan, A.C. Balke, T.D. Tarbell, J.K. Lawrence, A&A 253, L1 (1992)

    ADS  Google Scholar 

  95. P.E. Seiden, D.G. Wentzel, ApJ 460, 522 (1996)

    Article  ADS  Google Scholar 

  96. S. Servidio, W.H. Matthaeus, M.A. Shay, P.A. Cassak, P. Dmitruk, Phys. Rev. Lett. 102, 115003 (2009)

    Article  ADS  Google Scholar 

  97. S. Servidio, W.H. Matthaeus, M.A. Shay, P. Dmitruk, P.A. Cassak, M. Wan, Phys. Plasmas 17, 032315 (2010)

    Article  ADS  Google Scholar 

  98. T.H. Solomon, E.R. Weeks, H.L. Swinney, Physica D 76, 70 (1994)

    Article  ADS  Google Scholar 

  99. K.V. Tam, A.W. Hood, P.K. Browning, P.J. Cargill, A&A 580, 122 (2015)

    Article  ADS  Google Scholar 

  100. T. Török, B. Kliem, ApJ 630, L97 (2005)

    Article  ADS  Google Scholar 

  101. A. Toutountzi, L. Vlahos, H. Isliker, K. Moraitis, M. Georgoulis, G. Chintzoglou, A&A (submitted) (2016)

  102. R. Turkmani, P.J. Cargill, K. Galsgaard, L. Vlahos, H. Isliker, A&A 449, 749 (2006)

    Article  ADS  Google Scholar 

  103. M. Ugai, Phys. Fluids B 4, 2953 (1992)

    Article  ADS  Google Scholar 

  104. V. Uritsky, M. Paxzuski, J.M. Devila, S.I. Jones, Phys. Rev. Lett. 99, 025001 (2007)

    Article  ADS  Google Scholar 

  105. V. Uritsky, J.M. Devila, ApJ 748, 60 (2012)

    Article  ADS  Google Scholar 

  106. V. Uritsky, J.M. Devila, L. Ofman, O. Coyner, ApJ 769, 62 (2013)

    Article  ADS  Google Scholar 

  107. L. Vlahos, et al., 1984, in Energetic Phenomena on the Sun, Eds. M., Kundu, B., Woodgate, NASA Conference Publication 2439

  108. L. Vlahos, in Statistical Description of Transport in Plasmas, Astro- and Nuclear Physics, edited by J. Misquich, G. Pelletier, P. Schuck (Nova Science Publishers, New York, 1993)

  109. L. Vlahos, Space Scien. Rev., 68, 39 (1994)

    Article  ADS  Google Scholar 

  110. L. Vlahos, M. Georgoulis, R. Kluiving, P. Paschos, A&A 299, 897 (1995)

    ADS  Google Scholar 

  111. L. Vlahos, T. Fragos, H. Isliker, M. Gergoulis, ApJ 575, L87 (2002)

    Article  ADS  Google Scholar 

  112. L. Vlahos, H. Isliker, F. Lepreti ApJ 608, 540 (2004)

    Article  Google Scholar 

  113. L. Vlahos, M. Georgoulis, ApJ 603, L61 (2004)

    Article  ADS  Google Scholar 

  114. L. Vlahos, S. Krucker, P. Cargill, in Turbulence in Space Plasmas, edited by L. Vlahos and P. Cargill (Lecture Notes in Physics, Springer Verlag, 2008)

  115. M. Wan, W.H. Matthaeus, V. Roytershteyn, H. Karimabadi, T. Parashar, P. Wu, M. Shay, Phys. Rev. Lett. 114, 175002 (2015)

    Article  ADS  Google Scholar 

  116. E.R. Weeks, J.S. Urbach, H.L. Swinney, Physica D 97, 291 (1996)

    Article  ADS  Google Scholar 

  117. D.G. Wentzel, P.E. Seiden, ApJ 390, 280 (1992)

    Article  ADS  Google Scholar 

  118. T. Wiegelmann, Sol. Phys. 219, 87 (2004)

    Article  ADS  Google Scholar 

  119. T. Wiegelmann, T. Sakurai, Living Rev. in Sol. Phys. 9, 5 (2012)

    Article  ADS  Google Scholar 

  120. V. Zhdankin, S. Boldyrev, J.C. Perez, S.M. Tobias, ApJ 795, 8 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlahos, L., Isliker, H. Complexity methods applied to turbulence in plasma astrophysics. Eur. Phys. J. Spec. Top. 225, 977–999 (2016). https://doi.org/10.1140/epjst/e2016-02650-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02650-7

Navigation