Skip to main content
Log in

Shock compression of [001] single crystal silicon

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.V. Al’tshuler, Sov Phys. Uspekhi 8, 52 (1965)

    Article  ADS  Google Scholar 

  2. A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. Kalantar, G. Kyrala, R.W. Lee, P. Lomdahl, M.A. Meyers, D. Paisley, S. Pollaine, B. Remington, D.C. Swift, S. Weber, J.S. Wark, Phys. Rev. Lett. 86, 2349 (2010)

    Article  ADS  Google Scholar 

  3. H. Kishimura, H. Matsumoto, J. Appl. Phys. 103, 023505 (2008)

    Article  ADS  Google Scholar 

  4. R.F. Smith, C.A. Bolme, D.J. Erskine, P.M. Celliers, S. Ali, J.H. Eggert, S.L. Brygoo, B.D. Hammel, J. Wang, G.W. Collins, J. Appl. Phys. 114, 133504 (2013)

    Article  ADS  Google Scholar 

  5. N.S. Enikolopyan, A.A. Zharov, V.A. Zhorin, A.G. Kazakevich, P.A. Yampolski, J. Appl. Mech. Tech. Phys. 15, 116 (1974)

    Article  ADS  Google Scholar 

  6. S.M. Walley, J.E. Balzer, W.G. Pround, J.E. Field, Proc. R. Soc. Lond. A. 456, 1483 (2000)

    Article  ADS  Google Scholar 

  7. M.N. Pavlovskii, Sov. Phys. Solid State. 9, 2514 (1967)

    Google Scholar 

  8. W.H. Gust, E.B. Royce, J. Appl. Phys. 42, 1897 (1971)

    Article  ADS  Google Scholar 

  9. T. Goto, T. Sato, Y. Syono, Jpn J. Appl. Phys. Lett. 21, 369 (1982)

    Article  ADS  Google Scholar 

  10. J.S. Wark, R.R. Whitlock, A. Haner, J.E. Swain, P.J. Solone, Phys. Rev. B. 35, 9391 (1987)

    Article  ADS  Google Scholar 

  11. J. Ren, S.S. Orlov, L. Hesselink, J. Appl. Phys. 97, 104304 (2005)

    Article  ADS  Google Scholar 

  12. G.J. Cheng, M.A. Shehadeh, Int. J. Plast. 22, 2171 (2006)

    Article  Google Scholar 

  13. G.J. Cheng, M.A. Shehadeh, Scr. Mater. 53, 1013 (2005)

    Article  Google Scholar 

  14. G. Mogni, A. Higginbotham, K. Gaál-Nagy, N. Park, J.S. Wark, Phys. Rev. B. 89, 064104 (2014)

    Article  ADS  Google Scholar 

  15. S. Zhao, B. Kad, E.N. Hahn, B.A. Remington, C.E. Wehrenburg, C.M. Huntington, H.S. Park, E.M. Bringa, K. More, M.A. Meyers, Extreme Mech. Lett. 5, 74 (2015)

    Article  Google Scholar 

  16. F.H. Stillinger, T.A. Weber, Phys. Rev. B. 31, 5262 (1985)

    Article  ADS  Google Scholar 

  17. J. Tersoff, Phys. Rev. B., 38 9902

  18. P. Erhart, K. Albe, Phys. Rev. B. 71, 035211 (2005)

    Article  ADS  Google Scholar 

  19. T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comput. Mater. Sci. 39, 457 (2007)

    Article  Google Scholar 

  20. P.K. Schelling, Comput. Mater. Sci. 44, 274 (2008)

    Article  Google Scholar 

  21. V.S. Dozhdikov, A.Y. Basharin, P.R. Levashov, J. Chem. Phys. 137, 054502 (2012)

    Article  ADS  Google Scholar 

  22. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  23. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  24. E.M. Bringa, K. Rosolankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, Nat. Mater. 5, 805

  25. L.M. Hale, D.B. Zhang, X. Zhou, J.A. Zimmerman, N.R. Moody, T. Dumitrica, R. Ballarini, W.W. Gerberich 54, 280 (2012)

    Google Scholar 

  26. S.K. Deb, M. Wilding, M. Somayazulu, P.F. McMillan, Nature 414, 528 (2001)

    Article  ADS  Google Scholar 

  27. P.W. Bridgman, Phys. Rev. 48, 825 (1935)

    Article  ADS  Google Scholar 

  28. H.C. Chen, J.C. Lasalvia, V.F. Nesterenko, M.A. Meyers, Acta Mater. 46, 3033 (1998)

    Article  Google Scholar 

  29. E. Teller, J. Chem. Phys. 36, 901 (1962)

    Article  ADS  Google Scholar 

  30. G. Duvall, R. Graham, Rev. Mod. Phys. 49, 523 (1977)

    Article  ADS  Google Scholar 

  31. M.A. Meyers, Dyn. Behav. Mater. (John Wiley & Sons, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Meyers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Hahn, E., Kad, B. et al. Shock compression of [001] single crystal silicon. Eur. Phys. J. Spec. Top. 225, 335–341 (2016). https://doi.org/10.1140/epjst/e2016-02634-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02634-7

Keywords

Navigation