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Abstract. In this mini-review, we report results from M. Mattioli, et al.
[Phys. Rev. Lett. 111, 165302 (2013)], M. Dalmonte, et al. [Phys.
Rev. B 92, 045106 (2015)] and M. Mattioli, et al. [New J. Phys.
17, 113039 (2015)], where it is shown that Rydberg atoms trapped
in one-dimensional optical lattices are a useful tool to investigate the
equilibrium phase diagram and the non-equilibrium dynamics of ex-
tended Hubbard models and Kinetically Constrained Models, respec-
tively. Atoms weakly-dressed to an high-lying Rydberg state, which
interact with a constant potential extended over several lattice sites,
can be in an exotic quantum liquid state, the cluster Luttinger liquid
phase [42,43]. Furthermore, we show how a many-body model of inter-
acting three-level atoms in the V-shaped configuration, where one of
the level is a Rydberg state, might relax to equilibrium according to the
same rules, so-called kinetic constraints, which are known to reproduce
the characteristic dynamical arrest and separation of timescales of real
glass-forming materials [62].

1 Introduction

Alkali Rydberg-excited atoms [1], whose relatively simple electronic structure resem-
bles the one of hydrogen atoms, have exaggerated properties that depend on their
principal quantum number n [2,3].
As an example, the van der Waals interaction between two Rydberg atoms is

known to scale with the interatomic distance r as ∼ n11/r6 [2]. While interactions
between ground-state atoms are mainly weak and contact-like [4] and those between
ions are non-adjustable even though large [5], Rydberg atoms possess both strong
and tuneable interactions over distances of several μm. The tunability is twofold: on
one hand, the sign of the interaction can be changed from positive (repulsive) to
negative (attractive), and from isotropic (e.g. for s states) to anisotropic (for higher
angular momentum states); on the other hand, in presence of external fields or close
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to Förster resonances, it becomes dipolar-like, ∼ n4/r3 [2], thereby enhancing its
long-range character with respect to the van der Waals case.
The advance in atomic molecular and optical physics, that has nowadays given

the possibility to trap and laser-excite Rydberg atoms in experiments, has sparkled
intense theoretical and experimental activity with the aim to simulate condensed
matter strongly-correlated systems. Indeed, the combination of the high degree of
control typical of cold and ultracold atom experiments, together with the aforemen-
tioned strong, tuneable and long-range interactions, elect Rydberg atoms as ideal
candidates to study spin models and novel many-body phases either at equilibrium
or at non-equilibrium [6–31].
At present, the investigation of static (equilibrium) properties of spin models fo-

cuses on two main branches: In the so-called frozen gas regime [32], where kinetic
energies and spontaneous emission rates from Rydberg states (∼ kHz) are much
smaller than interaction energies (∼ GHz), and atomic motion is negligible within
experimental timescales, an ensemble of Rydberg atoms can be mapped to a fully
coherent many-body two-level spin Hamiltonian, whose two states are encoded in the
ground- and Rydberg states. When, instead, kinetic energies are comparable to inter-
actions (both being larger than spontaneous emission rates from Rydberg states) and
atomic motion is relevant, Hubbard-like models can be investigated. For Rydberg
atoms, the requirement is to go beyond the frozen-gas regime: in [33], it has been
proposed to do so by weakly-admixing the Rydberg state to the ground-state using a
far-off-resonant laser in order to obtain an interaction strength which is considerably
smaller than the bare Rydberg interaction and comparable to average atomic kinetic
energies (see introduction in Sect. 2). Furthermore, the resulting effective potential
between dressed ground-state atoms, for distances smaller than a critical cut-off ra-
dius, remarkably flattens off and becomes constant. The latter feature is peculiar and
does not occur typically in nature; nevertheless it gives the possibility to explore ex-
otic models and states of matter which have been only theoretically investigated in
literature. As an example, recent works [34–37] based on the dressing proposal, sug-
gest that the ground-state of Rydberg-dressed atoms can be in a supersolid phase, an
elusive quantum state of matter theoretically predicted almost 50 years ago [38–40]
and characterised by the unusual coexistence of both crystalline and superfluid or-
ders [41]. In one-dimensional (1d) systems, instead, as discussed in detail in Sect. 2
and [42,43], it has been proven that these so-called soft-shoulder potentials lead to
the breakdown of the standard Luttinger liquid theory [44], known to capture the
physics of a plethora of different models in one-dimension [45–54].
As anticipated above, also non-equilibrium aspects of spin models can be studied

with Rydberg atoms. For example, recently it has been shown that dynamical con-
straints typical of certain idealized models, so-called Kinetically Constrained Models
[55] (KCMs), appear naturally in the transient relaxation of ensembles of Rydberg
atoms towards equilibrium. In KCMs, these kinetic constraints, which allow or for-
bid transitions among different configurational spin states depending on the state of
neighboring spins, determine the dramatic increase of relaxation timescales and the
emergence of dynamical heterogeneities [56,57] predicted and observed in real struc-
tural glasses [58–61]. In [62], whose main results are summarized in Sect. 3, dynamical
constraints are encoded in the interplay between the Rydberg-blockade [63–66] and
the laser detuning from the Rydberg state, in that the presence of a Rydberg exci-
tation at a certain position facilitates (i.e. promotes) the creation of a further neigh-
bouring Rydberg excitation if the laser detuning from the Rydberg state exactly
compensates for the interaction energy shift between the two Rydberg excitations.
Other proposals on how to encode similar kinetic constraints with Rydberg atoms can
be found in [67–72]. We finally note that, recently, dynamical properties of a many-
body Rydberg system exhibiting manifest kinetic constraints have been measured
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in [73], confirming the potential of cold Rydberg experiments to study phenomena,
like glassy dynamics, typical of soft-condensed matter physics.
The remainder of this mini-review paper is organized as follows. In Sect. 2 we

study the equilibrium properties of clusters of Rydberg excitations in 1d optical lat-
tices. First we determine the frustrated underlying cluster structure in the classi-
cal limit (Sect. 2.1). In the quantum regime, we then study the strongly-interacting
regime in perturbation theory (Sect. 2.2) and finally we establish an effective clus-
ter Luttinger liquid theory (Sect. 2.3) whose predicitons, which differ from the
standard Luttinger liquid scenario ones, are corroborated by numerical simulations
presented in Sect. 2.4. In Sect. 3, we investigate the non-equilibrium dynamics of
Rydberg excitations in 1d optical lattices. After introducing the model (Sect. 3.1),
we review properties of a single three-level atom in the V-configuration (Sect. 3.2)
and we then introduce (Sect. 3.3) and study numerically (Sect. 3.4) the dynam-
ical behaviour of the many-body model, which we find to display signatures of
glassy dynamics, including dynamical heterogeneities and separation of relaxation
timescales.

2 Cluster Luttinger liquids of Rydberg-dressed atoms in optical
lattices

In [42,43], we studied the phase diagram of an extended Bose-Hubbard model,
described by the following Hamiltonian

H = −J
L∑

i=1

(b†i bi+1 +H.C.) + V
L∑

i=1

Rc∑

�=1

nini+�. (1)

Here, b†i (bi) are bosonic/fermionic creation (annihilation) operators at the site i
(L being the total number of sites), ni = b†i bi is the number operator, J is the
tunnelling rate and V is the soft-core off-site interaction potential which extends up
to the critical cut-off radius Rc.
These particular features of the interaction potential can be experimentally re-

alised with Rydberg-dressed cold gases. In the weak-dressing regime, Ω� |Δ|, atoms
in their ground-states are off-resonantly coupled with Rabi frequency Ω and red de-
tuning Δ < 0 to an high-lying Rydberg state. The resulting effective potential as a
function of the relative distance x between pair of atoms reads [33]

V (x) =
Ω4

8Δ3
R6c

R6c + x
6

(2)

where the cut-off radius is the Condon radius Rc = [C6/(2|Δ|)]1/6 and C6 is the
van der Waals coefficient of the addressed Rydberg state. At large distances x� Rc,
V (x) reduces to the usual repulsive van-der-Waals interaction between Rydberg atoms
∝ x−6, suppressed by a factor [Ω/(2Δ)]4, since only a small fraction [Ω/(2Δ)]2 of the
Rydberg state is admixed to the bare ground-state. However, for x < Rc, a double
Rydberg excitation is prevented by the dipole blockade and V (x) saturates to a
universal constant value Ω4/8Δ3.

2.1 Classical cluster exchange model

The two relevant length scales in the classical limit [J = 0 in Eq. (1)] are Rc and the
average distance between particles r� = 1/ρ0, with ρ0 = N/L the particle density and
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N the total number of particles in the system. This leads to three possible regimes:
(i) liquid r� > Rc, (ii) crystal r

� = Rc and (iii) cluster liquid r
� < Rc. The ground-

state, in the regime of our interest r� < Rc, is made of two different kind of building
blocks, say A and B, characterized by a different number of particles and a fixed
number Rc of holes (i.e. lattice site where there is no atom). Furthermore, a given
ρ0 corresponds to a certain ratio of the number of blocks A and B, NA and NB ,
respectively. The classical ground-state consists of all possible permutations of the
configurations (arrangements) between blocks A and B with the minimal energy. For
open boundary conditions, it is possible to compute the degeneracy of the ground-
state, which we define as the total number of minimal energy configurations

d =
M !

NA!NB !
, (3)

where M = NA +NB = (L−N)/Rc is the total number of clusters in the chain.
Results exchange model rely on the fundamental assumption that all clusters

are objects without an internal structure. In the following, we discuss the physi-
cal interpretation behind the aforementioned statement and its regime of validity.
In Sect. 2.1.1, we show, that clusters are stable due to the presence of large en-
ergy barriers, which prevent hopping of particles to other clusters. In Sect. 2.1.2,
we probe the energy landscape of the system and show that a series of local min-
ima appear which are typical of clustered systems studied in soft-condensed matter
physics [74–79].

2.1.1 Tunnelling energy barriers

As an example, let us consider the instructive case with Rc = 4 and ρ0 = 1/4,
where an A-block is formed by two particles (followed by Rc = 4 empty sites),
and a B-block is formed by a single particle (followed by Rc = 4 empty sites).
As explained above, all configurations which can be written as a sequence of
A-blocks and B-blocks, with the constraint NB = 2NA, are ground-states. We now
identify, for later convenience, a cluster-particle as one of the two particle of the
A-block. In the lowest-energy configuration, the cluster-particle sits precisely next
the other particle, i.e. there are no holes in between them. Thus, in the ground-state,
the displacement Δs (in units of lattice spacing a) of the cluster-particle from its
ground-state position is, by definition, equal to 0. Due to the presence of finite-range
interactions in our model, any Δs �= 0 of the cluster-particle costs some energy. In our
example, Δs = 4 corresponds to the exchange between an A-block with a neighboring
B-block. We define the energy cost associated with this exchange process as tunnel-
ing energy barrier (where tunneling is here inspired by the corresponding quantum
mechanical exchange process).
Fig. 1(c) compares the tunnelling energy barrier of the box potential with the

Rydberg-dressed potential from Eq. (2). We note that the barrier of the former is
considerably larger than the one of the latter, suggesting that stronger interactions
would be needed in the quantum regime to observe the new quantum cluster state in a
realistic experiment. We quantify this feature by computing explicitly the barrier for
both potentials. In the box case, the only energy penalty paid in one of the possible
ground-state configurations is the pair interaction of the two particles in the A-block,
E0,Δs=0 = V . If instead Δs = 2, E0,Δs=2 = 2V , as the cluster-particle interacts with
two neighbors. The resulting energy barrier is thus ΔE0 = E0,Δs=2−E0,Δs=0 = V . In
the case of the Rydberg-dressed potential, we have to consider all terms of pairwise
interactions given by V (x) from Eq. (2). For the case of Fig. 1(b), the tunnelling
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Fig. 1. The classical ground-state is separated by a large energy barrier from all excited
states. (a) The physical move associated to an A-with-B block exchange is the tunnelling of
one cluster-particle (red sphere) from a doubly-occupied A-block (green) to a neighbouring
singly-occupied B-block (red). Δs is defined as the displacement of a cluster-particle with
respect to its ground-state original position, Δs = 0. Δs = 4 is again a ground-state configu-
ration and corresponds to the exchange process completed. (b) For Rc = 4, the ground-state
and the maximally excited (Δs = 2) configurations are shown, including the energy penalties
paid due to the presence of all other particles. Other excited states are Δs = 1 and 3 (not
shown). (c) At Δs = 2, the tunnelling energy barrier of the box potential (black) is roughly
a factor of 2 larger than the Rydberg-dressed barrier (red). Image taken from [42]. (This
figure is subject to copyright protection and is not covered by a Creative Commons license.)

energy barrier is then ΔE0 = V (3)+V (3)+V (8)− [V (1)+V (5)+V (10)] � 0.502V.
This is about a factor of two smaller than for the case of the box potential.
We conclude by remarking that the presence of these tunnelling energy barriers

strongly suppresses fluctuations of the cluster-particle position for finite (but large)
ratios of V/J in the quantum regime J �= 0. This justifies to extend the assumption
of no internal correlations between cluster particles of our classical exchange model
to be valid also for the low-energy field theory we formulated in Sect. 2.3.

2.1.2 Energy landscapes of test particles

We conclude the discussion of classical energies by considering the energy landscape
F (x), defined as the energy experienced by a test particle added at position x, while
keeping all other particles in the original position. Such test particle will then ‘sit’ in
correspondence of the local minima of F (x). For example, in Fig. 2, the test particle
in the Rydberg-dressed potential will prefer to be next to singly-occupied B-blocks,
precisely at positions x = 7, 10, 23, 26. For the box case, the flat shape of the interac-
tion potential increases the total number of local minima of F (x), which are located
at positions x = 5, 7, 8, 9, 10, 12, 21, 23, 24, 25, 26, 28.
The complex structure of the classical ground-states results in the emergence of

an exotic quantum liquid once quantum fluctuations are introduced. In Sect. 2.2, we
will first present a strong-coupling approach in the V � J limit, and in Sect. 2.3
a modified bosonization treatment which embodies the classical cluster constraints
studied in Sect. 2.1. The combination of the two approaches allows us to gain a
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Fig. 2. Comparison of the ground-state energy landscape F (x) at filling ρ0 = 1/4 and Rc = 4
for the box potential (black), the discrete (red) and free-space (red, dashed) Rydberg-dressed
potentials. Noticeably, all landscapes have similar barrier heights, i.e. hryd � 0.919hbox.
However, the many-step-like structure of the Rydberg-dressed potential renders the cluster
structures less stable with respect to the box case. We note that the physical interpretation
of these barrier heights is different with respect to the tunnelling energy barrier of Fig. 1:
here, F (x)/V denotes the energy cost of introducing a single test particle on top of a classical
ground-state configuration, while ΔE0/V in Fig. 1 describes the energy cost of moving a
particle within the cluster ground-state manifold. Image taken from [42]. (This figure is
subject to copyright protection and is not covered by a Creative Commons license.)

qualitative analytical understanding of the cluster Luttinger liquid phase, which we
quantitatively investigate in Sect. 2.4 with numerical simulations using the so-called
Density-Matrix Renormalization Group algorithm (DMRG) [80,81].

2.2 Strong-coupling approach to cluster manifolds: the XX model

After having identified the manifold of clustered ground-states in Sect. 2.1, it is now
possible to derive an effective Hamiltonian describing the strong-coupling limit J � V
of our extended Hubbard model. In order to do so, we define the projector G on the
classical ground-state manifold. In second order perturbation theory, the Hamiltonian
in Eq. (1) H = HV +HJ reduces to

Heff. � HV + FHJG 1

E0 −HV GHJF +O(J
4/V 3), (4)

where G = 1 − F , 1 is the identity matrix, E0 is the classical ground-state energy
within the cluster manifold, HV is the the classical energy functional [interaction term
in Eq. (1)] and HJ is the perturbation Hamiltonian [hopping term in Eq. (1)]. First,

we define effective spin-1/2 operators S̃j as follows: Ordering the cluster configuration
with an index j ∈ [1,M ], we associate to the position of each A-type cluster a spin-up,
and for each B-type, a spin-down. This is a one-to-one mapping of the Hilbert space
defined by F to the Hilbert space of a spin-1/2 chain with M sites. The effective
Hamiltonian can be then cast in a compact form as a spin chain. In the illustrative
example of Rc = 2 and ρ0 = 2/5, the second order effective Hamiltonian becomes

Heff. � H0 − J2

V

M∑

j=1

(S̃+j S̃
−
j+1 +H.C.), (5)
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where S̃+j (S̃
−
j ) is the usual raising (lowering) operators associated to S̃j . The strong-

coupling limit of Eq. (1) then reduces to a system of hard-core bosons (or spin-1/2)
hopping in an artificial lattice generated by the underlying cluster structure. The
cluster Luttinger liquid, which we will investigated in Sect. 2.3, interpreted as a
Luttinger Liquid of clusters of particles [42,43], is adiabatically connected to the
strong-coupling Hamiltonian (5).

2.3 Phenomenological cluster Luttinger liquid theory: beyond the standard
Luttinger liquid theory

Here we present the modified Luttinger liquid theory [44], which we call cluster
Luttinger liquid Theory, as it is based on the underlying classical cluster structure.
Even though our model is a discrete one, let us start with the most general form
of an interacting 1d Hamiltonian in the continuum

H = �
2

2m

∫
dxψ†(x)∇2ψ(x) +

∫∫
dx dyV (x− y)ρ(x)ρ(y), (6)

where ρ(x) = ψ†(x)ψ(x), ψ(x) is the bosonic quantum field at position x, the first
integral represents the kinetic term and the second (double) integral is the potential
contribution, with V (x−y) the (translational invariant) pairwise interaction between
two particles at position x and y. We will verify that the discrete nature of our model
does not affect significantly the predictions of the theory we developed.
In the density-phase representation

ψ(x) =
√
ρ(x)eiθ(x) (7)

where we have introduced the phase field θ(x), the following commutation relation
holds

[ρ(x), eiθ(y)] = δ(x− y)eiθ(y). (8)

Let us now introduce a new field, Π(x), describing the oscillation of ρ(x) on top of
the mean density ρ0, such that

ρ(x) = ρ0 +Π(x). (9)

The oscillation field and the phase field are conjugate of each other since

[Π(x), θ(y)] = −iδ(x− y). (10)

Up to know this is the standard hydrodynamic approach [44]. In order to go beyond
it, as in the traditional Haldane’s treatment, we introduce the auxiliary field ϕ(x)
such that

∇ϕ(x) = π[ρ0 +Π(x)]. (11)

The auxiliary field is assumed to increase by 2π every time it encounters a particle
while scanning the system in all its length L, i.e.

ϕ(x+ L) = ϕ(x) + 2πN, (12)

[see Fig. 3(a)]. If we assume an homogeneous distribution of particles, it is possible
to rewrite the density operator as

ρ(x) = ∇ϕ(x)
{
N∑

n=1

δ[ϕ(x)− 2πn]
}
, (13)
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=

Fig. 3. Configurations allowed for the field ϕ(x). (a) In the Luttinger liquid scenario, ϕ(x)
describes all possible particle configurations and takes integer values at the position of each
particle (red circles). The integrated particle density (thin orange line) follows the profile
of ϕ(x). (b) In the cluster Luttinger liquid scenario, ϕcl(x) is constrained by the cluster
structure, in which a certain number of particles are packed next to each other (blue circles).
The integrated particle density (thick orange line) does not follow the behaviour of ϕcl(x),
but jumps whenever a two-particle cluster is encountered. Image taken from [43]. (This figure
is subject to copyright protection and is not covered by a Creative Commons license.)

the quantity in brackets indicating that particles are located at points x� where
ϕ(x�) = 2πn. Finally, using the Poisson summation formula,

+∞∑

n=−∞
δ(x− nA) =

+∞∑

k=−∞

1

A
e−

iπkx
A (14)

(with A a constant) and the fact that x > 0, it is possible to show that

ρ(x) = ∇ϕ(x)
⎧
⎨

⎩
1

2π

∑

p∈Z
eipϕ(x)

⎫
⎬

⎭ =
[
ρ0 − 1

π
∇ϕ′(x)

]∑

p∈Z
e2ip[πρ0x−ϕ

′(x)] (15)

where, without loss of generality, we have redefined the summation index as p = −k/2
and

ϕ′(x) = πρ0x− ϕ(x)

2
. (16)

Let us now consider a more complicated shape of the initial particle distribution
which reflects the underlying classical cluster structure:

ρ(x) =

N∑

n=1

δ(x− xn) =
M∑

m=1

δ(x− xm) +
∑

�∈cl
δ(x− x�) =

M∑

m=1

f(xm)δ(x− xm). (17)

Here f(xm), which satisfies
∑M
m=1 f(xm) = N , can be equal to either 1 or 2. Due to

our choice of the density of particles, this means that we can have clusters of either
1 or 2 particles. In the center equality,

∑
�∈cl represents the sum over all two-particle

clusters. The key point is that the first sum indicates that there areM = (L−N)/Rc
clusters, each one containing at least one particle, while the second sum takes into
account the possibility of having clusters formed by two particles. We now introduce
a new field, ϕcl(x), schematically depicted in Fig. 3(b), which accounts for quantum
fluctuations on top of the classical cluster density such that

ϕcl(x+ L) = ϕcl(x) + 2πM, (18)
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in analogy to ϕ(x) in the standard Haldane scenario. Using

δ[g(x)] =
∑

j=zeros of g

1

|∇g(xj)|δ(x− xj) (19)

we can rewrite the ansatz for the density field as

ρ(x) = ∇ϕcl(x)
M∑

m=1

f(xm)δ[ϕcl(x)− 2πm]. (20)

Next we need to Fourier transform Eq. (20). In order to do so we expand its sum as

M∑

m=1

f(xm)δ[ϕcl(x)− 2πm] =
M∑

m=1

δ[ϕcl(x)− 2πm] +
∑

�∈cl
δ[ϕcl(x)− 2π�] (21)

where, in analogy to Eq. (17),
∑
�∈cl is over all two-particle clusters. The first sum

can be easily Fourier transformed exploiting again the Poisson summation formula

lim
M→∞

M∑

m=1

δ[ϕcl(x)− 2πm] =
∑

p∈Z

1

2π
eipϕcl(x). (22)

Now we need to Fourier transform
∑
�∈cl, which gives as a result just renormalized

coefficients in the previous expression, thus not affecting its functional form. We notice
that they are nevertheless expected to be very small for M � N , that is when the
number of two-particle clusters is not too large.
In analogy to Eq. (16), we rescale the field as

ϕ′cl(x) = πρ0σx−
ϕcl(x)

2
, (23)

where σ =M/N and then we can express the density as

ρ(x) =
∇ϕcl(x)

σ

⎧
⎨

⎩
∑

p∈Z

ap

2π
eipϕcl(x)

⎫
⎬

⎭ =
[
ρ0−∇ϕ

′
cl(x)

πσ

]∑

p∈Z
ap e

2ip[πρ0σx−ϕ′cl(x)]. (24)

Here the prefactor σ has been introduced in order to compensate for the delta function
renormalized coefficients ap. The single particle bosonic operators ψ(x) [see Eq. (7)]
can also be computed applying an analogous procedure to get

ψ(x) �
√
ρ0−∇ϕ

′
cl(x)

πσ
eiβθcl(x)

∑

p∈Z
ap e

2ip[πρ0σx−ϕ′cl(x)] (25)

where θ′cl(x) is the conjugate field of ϕ
′
cl(x), i.e.

[∇ϕ′cl(x)
π

, θ′cl(x)
]
= −iδ(x− y), (26)

in analogy to Eq. (10). This can be easily verified considering the role of the factor β
in Eq. (25): if we approximate the density operators with its non-oscillating part, we
need, from the analogous of Eq. (8), the following commutation to be fulfilled

[∇ϕ′cl(x)
πσ

, e−iβθ
′
cl(x)

]
= −δ(x− y)e−iβθ′cl(x). (27)
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Equation (27) is satisfied if β = σ, which then automatically ensures that Eq. (26)
holds.
The effective low-energy Hamiltonian associated to the fields ϕ′cl(x) and θ

′
cl(x) [or,

equivalently, ϕcl(x) and θcl(x)] is a compactified boson theory (� = 1)

Hcl = vcl

2

∫
dx

{
1

Kcl
[∇ϕcl(x)]2 +Kcl [∇θcl(x)]2

}
(28)

where vcl is the (cluster) sound velocity while Kcl is the (cluster) Luttinger para-
meter. The Hamiltonian in Eq. (28) is gapless and conformal, with central charge
c = 1. All correlation functions of the microscopic operators can be evaluated using
conventional techniques. This theory is very similar to a Luttinger liquid, with the
exception that the mapping between microscopic and low-energy degrees of freedom
presents remarkable differences, which are visible in the correlation functions we are
going to study in Sect. 2.4.

2.4 Numerical results

Here we investigate the difference between a standard Luttinger liquid and a cluster
Luttinger liquid comparing the analytical results of our (modified) cluster Luttinger
liquid theory 2.3 with DMRG numerical simulations [80,81].
The modified functional form of the density operator [Eq. (24)] allows us to make

predictions on the scaling of the density-density correlation functions

〈ρ(x)ρ(0)〉 � ρ20 +
α1

x2
+
α2 cos(2πρ0σx)

xγ1
+ ... , (29)

with α1, α2 and γ1 non-universal coefficients. Equation (29) displays a different spatial
modulation with respect to the standard Luttinger liquid correlation function

〈ρ(x)ρ(0)〉 � ρ20 +
K

2πx2
+
α cos(2πρ0x)

x2K
+ ... , (30)

where K is the so-called Luttinger parameter and α is a constant. In fact, in Eq. (30),
the periodicity of the oscillation is determined by the particle density 2πρ0, while in
the cluster Luttinger liquid it is determined by the cluster density, 2πρ0σ. This feature

is reflected also in the static structure factor S(q) = 1 + ρ0
∫ L
0
dx eiqx〈ρ(x)ρ(0)〉, i.e.

the Fourier transform of the density-density correlation function. In the extended
Hubbard model of Eq. (1), assuming periodic boundary conditions (PBCs), S(q) can
be written as

S(q) =
1

L

L∑

�,�′=1

eiq(�−�
′) [〈n� n�′〉 − ρ20

]
, (31)

where both indices �, �′ have to be summed over all lattice sites L. The factor 1/L
ensures that S(q) is finite also in the themordinamic limit.
Peaks in S(q) are not located at momenta associated with the particle density, as

in standard Luttinger liquids. For example, the lowest-momentum peak of the cluster
Luttinger liquid structure factor, as it can be verified in Fig. 4(a), is located at

q� = 2πρ0σ =
2πM

L
=
2π(1− ρ0)

Rc
. (32)

The bosonic field operator we calculated in Eq. (25) allows to predict the behaviour
of the single-particle Green’s function, 〈ψ†(x)ψ(0)〉, which also signals the departure
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Fig. 4. (a) DMRG-computed static structure factor at fixed ρ0 = 1/4, Rc = 4 and different
interactions for L = 48. The black solid line represents the classical limit (J = 0). The latter
has been computed, within our cluster exchange model, considering all energetically allowed
permutations of blocks A and B. (b) Momentum distribution for the same parameters as
in (a). In both panels plots in the range [π, 2π] are not shown because, due to PBCs, they
are symmetric with respect to [0, π]. Image adapted from [42]. (This figure is subject to
copyright protection and is not covered by a Creative Commons license.)

from the standard Luttinger liquid scenario. In particular, its Fourier transform, the

momentum distribution m(q) =
∫ L
0
dx eiqx〈ψ†(x)ψ(0)〉 or, in our model,

m(q) =
1

L

L∑

�,�′=1

eiq(�−�
′)〈b†�b�′〉 (33)

exhibits a peak at the same critical momentum q� of S(q) (see Fig. 4(b) and [42]). We
note that other signatures of the breakdown of the standard Luttinger Liquid theory
can also be found using level spectroscopy techniques [82].

3 Glassy dynamics of Rydberg excitations in optical lattices

After dealing with static equilibrium properties of 1d clusters of Rydberg excitations,
here we study the dynamical properties of the relaxation of Rydberg excitations in
1d optical lattices that ‘hop’ from one site to another according to the same kinetic
constraints of KCMs, the idealized lattice models known to capture dynamical slowing
down and space-time heterogeneities of structural glasses.

3.1 The model

We schematize each atom, trapped at its site in a largely spaced 1d optical lattice
[24,83–88], with lattice unit a, as a V-shaped three-level system. Atoms are resonantly
driven with Rabi frequency Ωe from the electronic ground-state |g〉 to a low-lying
excited state |e〉, which is short-lived (i.e. its associated spontaneous emission rate
γe is large), and far-off-resonantly driven to a metastable Rydberg state |r〉 with
detuning Δr and Rabi frequency Ωr (see Fig. 5). Tuning Ωe allows the exploration of
the crossover from classical to coherent dynamics of Rydberg excitations trough the
1d chain.
More precisely, for large Ωe, the relaxation of Rydberg excitations resembles the

non-equilibrium dynamics of a classical KCM, the so-called One-Spin Facilitated
Model [55,69] (1-SFM). As already mentioned, kinetic constraints in our model are a
consequence of the interplay between Rydberg blockade [63–66] and the laser detun-
ing Δr. In contrast, for vanishing Ωe, coherences of the |g〉 ↔ |r〉 transition dominate
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Fig. 5. The V-shaped three-level atom is schematized by a ground-state |g〉, a Rydberg
state |r〉 and an intermediate excited state |e〉. Atoms are coherently laser-driven with Rabi
frequencies Ωe (Ωr) between |g〉-|e〉 (|g〉-|r〉) and γe is the decay rate due to spontaneous
emission from |e〉. The anti-blockade condition V = Δr, i.e. when the laser detuning Δr with
respect to the |g〉-|r〉 atomic transition is equal to the interactions between neighbouring
Rydberg-excited atoms V , ensures that whenever an atom is in |r〉 (defect, blue sphere),
an atom next to it, initially in |g〉 (facilitated atom, red sphere), will also be favoured to
be excited to |r〉. An atom in |g〉 far from a defect (non-facilitated atom, black sphere)
is blocked, because its |g〉-|r〉 transition is far-off-resonant with large Δr. Image adapted
from [62]. (This figure is subject to copyright protection and is not covered by a Creative
Commons license.)

the dynamics within the lifetime of the addressed Rydberg state, given by the inverse
of its spontaneous emission rate γ−1r [24].
Let us now make the following assumptions, which will be valid later on, unless

otherwise stated:

– the Rydberg state is metastable, that is γr = 0;
– interactions between Rydberg-excited atoms are only nearest-neighbor. Since
the real potential between two Rydberg excitations is of the van der Waals
type [2], V (x) = V/x6, the approximation translates to V (1) = V and
V (x � 2) = 0 (x here is in units of a);

– Ωr � Ω2e/γe, for reasons that will be clear later on.
The Hamiltonian of the system described above, in the rotating frame (with � = 1)

and after performing the rotating wave approximation, reads

H =

N∑

i=1

{
Ωe
2
(|g〉〈e|i +H.C.) + Ωr

2
(|g〉〈r|i +H.C.)− (Δr +Δ′ri) |r〉〈r|i

}

+V
N−1∑

i=1

|r〉〈r|i ⊗ |r〉〈r|i+1. (34)
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3.2 A single-atom in the V-configuration

Before studying the many-body model, we review here the properties of a single
three-level atom in the V-configuration, which has been already extensively studied
in literature, both theoretically [89–95] and experimentally [96,97]. For a single atom
the Hamiltonian in Eq. (34), reduces to

H =
Ωe
2

(|g〉〈e|+H.C.)+ Ωr
2

(|g〉〈r|+H.C.)−Δr|r〉〈r|. (35)

In the Born-Markov approximation, the master equation describing the dissipative
evolution of the reduced system density matrix 
(t) is in the Lindblad form [98]


̇(t) = −i[H, 
(t)] + γe

2

(
2c
(t)c† − c†c
(t)− 
(t)c†c), (36)

where c = |g〉〈e| is the quantum jump operator, which (ideally) projects instanta-
neously the atomic state into the ground-state.
Let us imagine to measure photons emitted from |e〉 with a perfectly efficient

photodetector. The theory of continuous measurement [95] ensures that, under con-
tinuous monitoring of the strong transition |g〉 ↔ |e〉 with our photodetector and
during time intervals where no photons are detected, the system wave function |ψ(t)〉
evolves according to the Schrödinger equation i d

dt
|ψ(t)〉 = Heff |ψ(t)〉, with

Heff = H − iγe

2
c†c = H − iγe

2
|e〉〈e| (37)

an effective non-Hermitian Hamiltonian andH given by Eq. (35). The general solution
for the system wave function is

|ψ(t)〉 =
3∑

n=1

cne
−iλnt|un〉, (38)

where λn and |un〉 are the eigenvalues and associated eigenvectors of Heff , respec-
tively [99]. The coefficients cn can be determined from the initial condition, e.g.
|ψ(0)〉 = |g〉. In the limit Ωr � Ωe, γe,Δr, λn and |un〉 can be computed in pertur-
bation theory.

3.2.1 Brillouin-Wigner perturbation theory

In the following, we summarize the steps for the calculation of λn and |un〉 of Heff in
Eq. (37) within a Brillouin-Wigner perturbation theory approach. We compute ex-
plicitly λ3 and |u3〉 (the other eigenvalues and eigenvectors can be in analogy straight-
forwardly computed). In the {|g〉, |e〉, |r〉} basis, Heff has the following matrix form

Heff =

⎛

⎜⎝
0 Ωe

2
Ωr
2

Ωe
2 − iγe2 0
Ωr
2 0 −Δr

⎞

⎟⎠ . (39)

Assuming Ωr � Ωe, γe,Δr, one can split Eq. (39) in

H0 =

⎛

⎜⎝
0 Ωe

2 0
Ωe
2 − iγe2 0

0 0 −Δr

⎞

⎟⎠ and H1 =

⎛

⎜⎝
0 0 Ωr2
0 0 0
Ωr
2 0 0

⎞

⎟⎠ , (40)
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such thatHeff = H0+H1, whereH0 is the unperturbed Hamiltonian andH1 is the per-

turbation. Let us introduce a unitary transformation U = e
1
2 arctan

{
2iΩe
γe
(|e〉〈g|−|g〉〈e|)

}

which diagonalizes H0, such that

H̃0 = UH0U
† =

⎛

⎝
Em 0 0

0 Ep 0

0 0 −Δr

⎞

⎠ , (41)

where U† is the Hermitian conjugate of U , Em = i
4

(
−γe +

√
γ2e − 4Ω2e

)
and Ep =

− i4
(
γe +

√
γ2e − 4Ω2e

)
. Applying the same transformation on H1, H̃1 = UH1U

†, we
get

H̃1 =

⎛

⎜⎝
0 0 Ωc

2

0 0 iΩs
2

Ωc
2
iΩs
2 0

⎞

⎟⎠ , (42)

where Ωc = Ωr cosh {12arctanh 2Ωeγe } and Ωs = Ωr sinh {12arctanh 2Ωeγe }. The unitary
transformation U defines a change of basis from {|g〉, |e〉, |r〉} to, say, {|−〉, |+〉, |r〉}

|−〉 = Ωc
Ωr
|g〉 − iΩs

Ωr
|e〉 (43)

|+〉 = iΩs
Ωr
|g〉+ Ωc

Ωr
|e〉 (44)

|r〉 = |r〉. (45)

We now define two operators P and Q which project onto |r〉 and its complementary
subspace, respectively. Since U does not affect the |r〉 subspace [see Eq. (43)], P has
the same matrix form in either the {|g〉, |e〉, |r〉} or the {|−〉, |+〉, |r〉} basis

P =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , (46)

while Q can be easily obtained from the orthogonality property of projectors, i.e.
P +Q = 1, where 1 is the identity operator. The first- (E1) and second-order (E2)
corrections to the eigenvalue E0 = [PH0P]3,3 = [PH̃0P]3,3 = −Δr of the transformed
unperturbed Hamiltonian H̃0 are

E1 = [PH1P]3,3 = [PH̃1P]3,3 = 0 (47)

and

E2 = [PH̃1QR0QH̃1P]3,3 = − (γe + 2iΔr)Ω
2
r

4Δr(γe + 2iΔr)− 2iΩ2e
. (48)

Here, [A]i,j indicates the ith row and jth column of the matrix A and R0 =
(E01 − QH0Q)−1 is the so-called resolvent. Up to second order in Ωr, λ3 can be
approximated as

λ3 =

∞∑

n=0

En � E0 + E1 + E2

= −Δr − Ω2r(iγe − 2Δr)
8Δ2r − 2Ω2e − 4iγeΔr

. (49)
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We can now calculate the first-order correction to |r〉 originated by the other two
eigenstates of H̃0, |−〉 and |+〉, both mixed to |r〉 by the transformed perturbation
Hamiltonian H̃1. For example, the eigenvector |u3〉 associated to λ3, is:

|u3〉 = |r〉+ 〈−|H̃1|r〉
−Δr − Em +

〈+|H̃1|r〉
−Δr − Ep

= |r〉 − Ωr(iγe − 2Δr)
2iγeΔr − 4Δ2r +Ω2e

|g〉

− ΩeΩr
2iγeΔr − 4Δ2r +Ω2e

|e〉. (50)

As mentioned above, the coefficients cn can be calculated from the initial condition.
For example, setting |ψ(0)〉 = |g〉, we get

c3 =
Ωr(iγe − 2Δr)

4Δ2r − Ω2e − 2iγeΔr
. (51)

3.2.2 Quantum trajectories of a V-shaped three-level atom

The eigenvalues λn are complex numbers with negative imaginary parts Im{λn}. As
a consequence, |ψ(t)〉 does not conserve the norm during the evolution. For Ωr �
Ω2e/γe, one of the eigenvalues of Heff , exactly λ3 in Eq. (49), has a much less negative
imaginary part with respect to the other two, |Im{λ3}| � |Im{λ1}|, |Im{λ2}| [99].
This determines long tails in the delay function

D0(t) =

3∑

n=1

|cn|2e2tIm{λn}, (52)

which is the conditional probability that no photon has been detected until time t,
given a photon count has occurred at t = 0. Note that D0(t) is exactly the norm of
|ψ(t)〉, and its monotonous decay is dominated, in the long time limit, by Im{λ3}.
Thus Im{λ3} is responsible of the existence of a small but finite probability of a long
time window with no photon counts. When such a long interval of no photon counts
occurs, the atom is prepared in the Rydberg state as |ψ(t)〉 is dominated by |u3〉
[Eq. (50)].
The theory of continuous measurement teaches us that the master equation (36)

can be obtained simulating several stochastically different system realizations (or

trajectories) with wavefunction |ψ̃α(t)〉 and then averaging over them. The index α
labels each of the Ntraj independent trajectories, which can be reproduced according
to the following algorithm [91]:

1. Prepare the system in a certain (normalized) state |ψ̃(t0)〉α at the initial time t0.
2. Compute the probability of the occurrence of a quantum jump at t0 from
pα(t0) = γe〈ψ̃(t0)|c†c|ψ̃(t0)〉α dt � 1, where dt is an ideally infinitesimal time
step. The corresponding probability of no quantum jump is 1− pα(t0) ≈ 1.

3. According to these probabilities, randomly choose a no jump/jump event.

4. In case of no jump, propagate |ψ̃(t0)〉α with Heff [Eq. (39)] to obtain

the normalized wavefunction |ψ̃(t0 + dt)〉α = e−iHeffdt|ψ̃(t0)〉α/||...|| =
(1 − iHeffdt)|ψ̃(t0)〉α/||...||. Otherwise, project the wave function into the
ground-state, |ψ̃(t0 + dt)〉α = √γe c|ψ̃(t0)〉α/||...|| = |g〉.
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5. Repeat the procedure above for each time t ∈ [t0, tmax] until the desired final
trajectory time tmax is reached.

A typical experimental sequence of photon detections, that is of quantum jumps in
the trajectory language, looks like an alternation of bright and dark periods. During
a bright period, labelled by 0, the atomic population is rapidly cycled between |g〉
and |e〉 and the time between two successive photon detections is of the order of the
lifetime of |e〉, γ−1e . This means that the photodetector will count a large number of
photons in a bright period. In contrast, during a dark period, labelled with 1, the
atomic population is shelved in |r〉 and no photons are detected. An approximation
of the exact time evolution of 
(t) from Eq. (36) can be obtained simulating Ntraj
different trajectories and finally averaging over them,


(t) = lim
Ntraj→∞

1

Ntraj

Ntraj∑

α=1

|ψ̃(t)〉α〈ψ̃(t)|. (53)

In the following, the observable we are interested in is the Rydberg population, that
is, the expectation value of the Rydberg projector |r〉〈r| in |ψ̃(t)〉α,

rα(t) = ||〈r|ψ̃(t)〉α||2. (54)

Averaging rα(t) over Ntraj leads to

R(t) =
1

Ntraj

Ntraj∑

α=1

rα(t). (55)

In analogy to Eq. (53), limNtraj→∞R(t) = 
rr(t), where 
rr(t) ≡ 〈r|
(t)|r〉 is the
Rydberg population whose evolution is governed by the single-atom master Eq. (36).
As expected, Fig. 6 shows that R(t) converges to 
rr(t) upon increasing Ntraj.

3.2.3 Calculation of single-atom rates

In the following we illustrate three independent methods for the estimation of the
average duration of bright and dark periods T0 and T1, respectively, or of their inverse,
the transition probabilities (rates) from 0 to 1, Γ0→1 ≡ T−10 , and from 1 to 0, Γ1→0 ≡
T−11 . In [93], these rates are found to be

Γ0→1 =
d
rr(t)

dt

∣∣∣∣∣
t=0

, (56)

together with 
rr(0) = 0, and

Γ1→0 = −d
rr(t)
dt

∣∣∣∣∣
t=0

, (57)

together with 
rr(0) = 1. The rates in Eqs. (56) and (57) can thus be evaluated
fitting the slope of 
rr(t) within the initial times of the evolution and the proper
initial condition (e.g., from Fig. 6, it is possible to estimate Γ1→0 since the initial
condition is 
rr(0) = 1).
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0

0.8

Fig. 6. Rydberg population R(t) averaged over Ntraj trajectories compared to the exact
evolution �rr(t) governed by Eq. (36). Parameters are: Ωe = γe and Ωr = 0.03γe. Increasing
Ntraj, R(t) converges to �rr(t), as expected. Image taken from [62]. (This figure is subject
to copyright protection and is not covered by a Creative Commons license.)

An analytical derivation of the transition rates is also possible. In the long time
limit the delay function D0(t) ∼ p e−t/T1 , where p is the (small) probability to be in
a dark period [94,95]. Comparing it with Eq. (52) one gets

Γ1→0(Δr) = −2 Im{λ3} = γeΩ
2
eΩ
2
r

16Δ4r + 4Δ
2
r(γ

2
e − 2Ω2e) + Ω4e

, (58)

and

p = |c23| =
Ω2r(γ

2
e + 4Δ

2
r)

16Δ4r + 4Δ
2
r(γ

2
e − 2Ω2e) + Ω4e

, (59)

where the results are obtained substituting λ3 from Eq. (49) and c3 from Eq. (51).
In order to compute Γ0→1(Δr), we note that, during a bright period, |r〉 is almost
never populated and the effective emission rate will be that of the (resonantly driven)
two-level system |g〉 ↔ |e〉 with decay γe, i.e. γeΩ2e/(γ2e + 2Ω2e). Then, Γ0→1(Δr) is
simply this two-level emission rate multiplied by p [99],

Γ0→1(Δr) =
γeΩ

2
eΩ
2
r(γ

2
e + 4Δ

2
r)

(γ2e + 2Ω
2
e)[16Δ

4
r + 4Δ

2
r(γ

2
e − 2Ω2e) + Ω4e]

. (60)

If Δr = 0 the two rates simplify to

Γ1→0(0) ≡ Γ1→0 = γeΩ
2
r

Ω2e
and Γ0→1(0) ≡ Γ0→1 = γ3eΩ

2
r

Ω2e(γ
2
e + 2Ω

2
e)
. (61)

Finally, the third independent method to compute the rates relies on the direct
numerical calculation of the average over trajectories of the time-averaged length of
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Table 1. Estimates of the resonant (Δr = 0) rate Γ
1→0 (in units of γe), according to:

the short time slope of �rr(t), obtained as the exact solution of the master equation (ME)
[Eq. (36)], perturbation theory (PT ) [Eq. (61)] and quantum trajectory simulations (QT ).
In all three methods, parameters are: Ωe = γe and Ωr = 0.03γe. Within the QT method,
simulations of Ntraj = 6000 trajectories up to times γet = 10

6 have been performed.

ME PT QT

Γ1→0/γe 9.02 · 10−4 9.00 · 10−4 9.13 · 10−4

Table 2. Calculation of the creation [Γ0→1(Δ�r)] and destruction [Γ
1→0(Δ�r)] rates of a

Rydberg excitation (in units of γe), from Eqs. (58) and (60), for Δ
�
r = 0 (resonant rates) and

Δ�r = ±3γe,±10γe (far-off-resonant rates). Other parameters are: Ωe = γe and Ωr = 0.03γe.
The difference between resonant and far-off-resonant rates is of several order of magnitudes
and increases with |Δ�r |.

Δ�r = 0 Δ�r = ±3γe Δ�r = ±10γe
Γ0→1(Δ�r)/γe 3.00 · 10−4 8.80 · 10−6 7.54 · 10−7
Γ1→0(Δ�r)/γe 9.00 · 10−4 7.14 · 10−7 5.64 · 10−9

dark and bright periods in each trajectory. Results for Γ1→0, obtained with the three
different methods, are compared in Table 1.

3.3 Many atoms in the V-configuration

We now switch to the many-body model. In analogy to the single-atom case [Eq. (36)],
the many-body master equation


̇(t) = −i[H, 
(t)] + γe

2

N∑

i=1

(2ci
(t)c
†
i − c†i ci
(t)− 
(t)c†i ci), (62)

with ci = |g〉〈e|i the quantum jump operator at site i, describes the driven-dissipative
dynamics with the coherent evolution given by the Hamiltonian in Eq. (34). Further-
more, let us assume: (i) Ωr � Ω2e/γe, as in Sect. 3.2, for well defined quantum jumps
to occur, (ii) Δr � Ωe,Ωr, γe and (iii) V = Δr, which we call the anti-blockade
condition. The many-body transition rates, analogous to the single-particle rates in
Eqs. (58) and (60), can be determined as follows. In a 1d system, due to our as-
sumption V (x � 2) = 0, every process at a certain site i can be influenced at most
by its left and right neighbors, i ± 1. The many-body rates can be calculated from
Eqs. (58) and (60) with Δ�r = Δr − �V the effective detuning and � ∈ [0, 2] the
number of neighbors in the Rydberg state. Due to the anti-blockade condition, there
are three possible configurations: Δ�r = Δr if there are no neighbors in the Rydberg
state (� = 0), Δ�r = 0 if there is only one neighbor in the Rydberg state (� = 1) and
Δ�r = −Δr if both neighbors are in the Rydberg state (� = 2). Since in Eqs. (58)
and (60), Δr appears only in even powers, both off-resonant rates � = 0, 2 are equally
suppressed with respect to the resonant rate � = 1, as highlighted in Table 2.
In absence of conditions (i), (ii) and (iii), the strong transition |g〉 ↔ |e〉

might significantly increase the probability Γ0(1)→1(0)(±Δr) of (originally) suppressed
processes of excitation (deexcitation) to (from) |r〉 to take place. Since rates differ by
several order of magnitudes (see Table 2), the dynamics shows a large separation of
timescales (cf. Sect. 3.4).
Allowed (� = 1) and suppressed (� = 0, 2) processes are analogous to those who

characterize Spin Facilitated Models, as discussed in the following.
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Spin facilitated models

Let us now introduce here the basics of the dynamical behaviour of the 1-SFM and
the analogy between its many-body transition rates and the rates of our model.
Spin Facilitated Models (SFMs) are a class of KCMs that exhibit dynamical het-

erogeneities and slowing down of relaxation timescales [55]. Even though they can be
defined in a variety of lattice geometries and dimensions, from now on we will limit
ourselves to 1d. Let us now consider the energy function of non-interacting spins in
an external field,

E = K

N∑

i=1

ni, (63)

introduced by Fredrickson and Andersen in [100,101], where ni = 0, 1 is a classical
spin variable. In our setup, ni = 0 (1) corresponds to the ith atom being in a bright
(dark) period. In the SFM language, ni = 1 states are called defects, in that their
number is smaller than ni = 0 states. A system described by Eq. (63) does not feature
a finite temperature phase transition for a field strength K �= 0. The equilibrium
concentration of defects, reads

deq =
1

N
lim
t→∞

N∑

i=1

ni(t) =
1

1 + eβK
, (64)

where β = 1/(kBT ), kB is the Boltzmann’s constant and T is the equilibrium tem-
perature of the system. Furthermore, for every K > 0, limT→0 deq = 0, in line with
the intuition that at low T the concentration of defects should be small. From now
on, without loss of generality, we set kB = 1 and we fix the temperature scale setting
K = 1.
Despite the simple ground-state of Eq. (63), the non-equilibrium dynamics towards

it can be non-trivial. In general, in 1d, the evolution of a classical system of spins is
described by a rate equation for the probabilities p(n, t) of being in the many-body
spin state specified by the vector n = (n1, ..., ni, ..., nN ) at time t:

∂p(n, t)

∂t
=

∑

m �=n
{Γ(m→ n) p(m, t)− Γ(n→m) p(n, t)} . (65)

Here, Γ(m→ n) is the rate of the transition fromm to n �=m. The equilibrium prob-
abilities π(m, t) satisfy the detailed balance Γ(m → n)π(m, t) = Γ(n → m)π(n, t)
with respect to Eq. (63). Under the assumption of local spin-flips (i.e., at every time-
step only one spin state at a certain site of the chain can change) and Glauber
dynamics [102], the transition rate from (n1, ..., ni, ..., nN ) to (n1, ..., 1−ni, ..., nN ) at
site i, Γni→1−ni , is equal to 1/(1 + eβΔE), with ΔE = 1 − 2ni the energy difference
between the final and initial spin configurations. Since, for local spin flips, ΔE = ±1
are the only allowed outcomes, from Eq. (64) the single-particle rates can be written
as

Γni→1−ni = (1− deq)ni + deq(1− ni). (66)

Thus, the asymmetry between the ratio of the rates of creation over destruction of a
defect

Γ0→1

Γ1→0
=

deq

1− deq , (67)

fixes the temperature T at which the system of non-interacting spins should thermalize
in the long-time limit. (Note that Γ0→1 → Γ1→0 for T →∞.)
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Up to now, all transitions between different configurations are allowed. The key
idea behind SFMs (and KCMs in general) is to introduce restrictions in these transi-
tions, which are exactly the kinetic constraint we were talking about in Sect. 1. The
general rule can be stated as: a spin flip is allowed only if there are enough defects in
the neighbourhood that can facilitate such process. For the so-called 1d 1-SFM, the
dynamical rule requires that a spin can flip provided at least one of its two neighbors
is a defect. This facilitation condition transforms Eq. (66) into

Γni→1−ni = (ni−1 + ni+1) {(1− deq)ni + deq(1− ni)}. (68)

The association between rates in Eq. (68) and the many-body rates of our model
is straightforward: ni−1 = ni+1 = 0 corresponds to � = 0 for which no spin flip at site
i is allowed, while either {ni−1 = 1, ni+1 = 0} or {ni−1 = 0, ni+1 = 1} corresponds
to � = 1 and i is facilitated to flip its spin. The only difference arises in the case of
{ni−1 = ni+1 = 1}: while rates in the 1-SFM are doubled with respect to the case
{ni−1 = 1, ni+1 = 0}, for � = 2, rates are suppressed as much as in the case of � = 0.
This will lead to different steady states which we will discuss in Sect. 3.4.

3.4 Numerical results

In the limit of strong driving to the intermediate state Ωe ∼ γe, the dynamics
of the system is dominated by dissipation. As a method to study the system in
the presence of both coherent driving and dissipation, we use quantum trajec-
tory simulations (cf. 3.2). Figure 7 depicts a typical trajectory, labelled by α, of
the Rydberg population rα(t) from Eq. (54). While in the non-interacting case,
Δr = V = 0 [panel (a)], the dynamics of Rydberg excitations is unconstrained and
atoms behave independently from each other, as expected, in the strongly-interacting
case, Δr = V �= 0 [panel (b)], clear spatial correlations emerge and the dynamics
of Rydberg excitations resembles the ones of defects in the 1d 1-SFM [55]. The
dynamics of defects in the 1d 1-SFM has been shown to be mainly diffusive [103]
and it can be explained introducing three different species of atoms, which we label,
in analogy to the SFM language, as

– defects, that is atoms in |r〉;
– facilitated atoms, that is atoms in either |g〉 or |e〉 with one defect as nearest-
neighbor;

– non-facilitated atoms, that is atoms in either |g〉 or |e〉 with no defect as
nearest-neighbor.

Let us illustrate the diffusion process of defects in more detail. A typical trajectory
is depicted in Fig. 7(b) and marked by a blue ellipses. A defect can facilitate the
excitation of a neighboring atom. In this example, the atom to the right is excited.
For a short time, both are in the excited state but soon the original atom is de-
excited (soon meaning that the probability of de-excitation is much larger than the
probability of excitation): therefore, the defect has effectively moved to the right by
one site. Another possible move is highlighted in Fig. 7(b) with a red ellipses. In this
second example, the left neighbor is excited but later on de-excited. Here, the defect
did effectively not move.
The diffusion process can also be defined more quantitatively in some limits.

For example, in the regime T � 1 (or, equivalently, deq � 1), Γ0→1(0)/Γ1→0(0) ∼
deq ∼ e−β and the diffusion constant is deq/2 [55]. However, in the intermediate
regime that characterizes our work, the diffusion constant does not have such a
simple analytical expression, since Γ0→1(0)/Γ1→0(0) = 0.33 is not much smaller
than 1.
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Fig. 7. Comparison of a typical trajectory of Rydberg excitations in the unconstrained
case Δr = V = 0 (a) and facilitated case Δr = V = 10γe (b). Other parameters are:
N = 10,Ωe = γe, Ωr = 0.03γe. The initial condition is two Rydberg excitations in i = 1
and i = 6, while all other atoms are in |g〉. Processes of facilitation and diffusion (typical of
1-SFMs) and avoided merging (not present in 1-SFMs) are highlighted in panel (b). Image
taken from [62]. (This figure is subject to copyright protection and is not covered by a
Creative Commons license.)

Separation of timescales of defects, facilitated and non-facilitated atoms

In the following, we study the relaxation of the three different species individually.
Numerical simulations of Ntraj stochastically different trajectories are averaged in or-
der to approximate the dynamics of Rydberg excitations, according to the continuous
measurement theory. We plot Ri(t) from Eq. (55) for each atom i as a function of time
in Fig. 8. Facilitated atoms (red lines) show a dynamical behaviour analogous to the
one of resonantly-driven single-atoms, due to the anti-blockade condition which acts
as a kinetic constraint in the 1-SFM [cf. Eq. (68)]. In fact, the inset of Fig. 8 shows
that, in proximity of t = 0, the profiles of facilitated atoms are very well approxi-
mated by the resonant (Δr = 0) single-atom Rydberg population 
rr(t) (see 3.2), the
associated transition rate being Γ0→1(0).
Contrarily, the dynamics of defects (blue lines) and non-facilitated atoms (black

lines) is slowed down with respect to the one of facilitated atoms. At t = 0, the
weak transition |g〉 ↔ |r〉 of a defect is far-off-resonant and Γ1→0(Δr) is orders of
magnitude suppressed with respect to Γ1→0(0) [cf. Table 2]. A defect can in fact
relax only after one of its neighboring facilitated atoms is excited to the Rydberg
state. Similarly, at t = 0, the weak transition |g〉 ↔ |r〉 of a non-facilitated atom
is far-off-resonant and Γ0→1(Δr) is orders of magnitude suppressed with respect to
Γ0→1(0). The inset of Fig. 8 shows that profiles of non-facilitated atoms agree with
the far-off resonant (Δr �= 0) single-atom Rydberg population 
rr(t): non-facilitated
atoms, in order to be excited to the Rydberg state, have to wait for one of their
two neighbors to be Rydberg-excited too. Note that, for larger N , we predict the
existence of non-facilitated atoms with profiles of Ri(t) even slower than the ones
in Fig. 8. This can be regarded as a form of hierarchical relaxation [71], in that the
more distant a non-facilitated atom is with respect to a defect at t = 0, the more
slowed-down the evolution of Ri(t) will be. Hierarchical relaxation is a feature typical
of classical SFMs and more in general a signature of glassy dynamics predicted in
soft-condensed matter systems [104].



3014 The European Physical Journal Special Topics

0.8

Defect
Facilitated
Non-Facilitated
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Non-Facilitated
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Single atom 

Fig. 8. Evolution of the trajectory averaged Rydberg population Ri(t) for Ntraj = 500 in
a chain of N = 10 sites. Parameters are: Ωe = γe, Ωr = 0.03γe, Δr = V = 3γe. The initial
state is: defects (blue lines) at i = 1 and i = 6; facilitated atoms (red lines) at i = 2, 5, 7, 10
and non-facilitated atoms (black lines) at i = 3, 4, 8, 9. Exact master equation evolution
of the single-atom Rydberg population �rr(t) are shown for the initial states �rr(0) = 0
(orange dotted line) and �rr(0) = 1 (indigo dotted line). The result r > deq, suggests that
our system lacks of a true thermalisation to the ground-state of the 1-SFM (see main text).
The shaded thick black line is the value of deq = 0.25 according to Eq. (70). Inset: Resonant
(orange dotted line) and off-resonant (light brown dotted line) profiles �rr(t) with �rr(0) = 0
approximate the short time dynamics of facilitated and non-facilitated atoms, respectively.
Off-resonant �rr(t) with �rr(0) = 1 well approximates also the short time dynamics of defects
(not shown). Image taken from [62]. (This figure is subject to copyright protection and is
not covered by a Creative Commons license.)

Moreover, from Fig. 8 it is possible to infer that the steady-state value r of the
average concentration of defects,

r(t) =
1

N

N∑

i=1

Ri(t), (69)

does not coincide with the expected (thermal) concentration of Rydberg excitations
in the 1-SFM

deq =
γ2e

2(γ2e +Ω
2
e)
. (70)

Our system, thus, does not thermalize in the long-time limit, but it seems to converge
to a different steady-state. The reason has to be found in the presence of avoided
merging processes, highlighted in Fig. 7(b) with a yellow ellipses. Two Rydberg exci-
tations, separated by one lattice site in the ground-state, cannot merge, in that the
atom in the middle cannot be Rydberg-excited since it feels a detuning 2V . This
destroys the facilitating property of the anti-blockade condition V = Δr.
Let us finally mention that, in theory, one could think of workaround the problem

of avoided merging processes and reproduce the exact dynamics of the 1d 1-SFM
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introducing a third laser which couples weakly |g〉 ↔ |r〉 with the same small Rabi
frequency Ωr and with large detuning 2Δr from |r〉 (in addition to the original laser
with Rabi frequency Ωr and detuning Δr). In this configuration, processes of merging
of Rydberg excitations would be allowed and we expect the steady-state to be also
the thermal state of the 1-SFM, i.e. r = deq.

4 Conclusions

We have studied the equilibrium and non-equilibrium dynamics of clusters of Rydberg
excitations in one-dimension. We have demonstrated the stabilization of cluster quan-
tum liquids with qualitatively new features with respect to the standard Luttinger
liquid scenario. These features, which result from frustration and cluster formation in
the corresponding classical ground-state structure, can be readily observed in state-
of-the-art experiment with Rydberg-dressed atoms in optical lattices.
In addition, we have proposed a model system of interacting V-shaped three-level

atoms, where one of the level is a Rydberg state, and studied the resulting glass-
like dynamics of Rydberg excitations. We found that the anti-blockade regime, that
is where the nearest-neighbour interaction among Rydberg-exicted atoms equals the
single atom laser detuning from the Rydberg state, implements a form of kinetic
constraint, causing the dynamical arrest and increase of relaxation timescales typical
of glass-forming systems.
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