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Abstract. The Baryon Antibaryon Symmetry Experiment (BASE)
aims at performing a stringent test of the combined charge parity and
time reversal (CPT) symmetry by comparing the magnetic moments
of the proton and the antiproton with high precision. Using single
particles in a Penning trap, the proton/antiproton g-factors, i.e. the
magnetic moment in units of the nuclear magneton, are determined
by measuring the respective ratio of the spin-precession frequency to
the cyclotron frequency. The spin precession frequency is measured
by non-destructive detection of spin quantum transitions using the
continuous Stern-Gerlach effect, and the cyclotron frequency is deter-
mined from the particle’s motional eigenfrequencies in the Penning trap
using the invariance theorem. By application of the double Penning-
trap method we expect that in our measurements a fractional precision
of δg/g 10−9 can be achieved. The successful application of this method
to the antiproton will consist a factor 1000 improvement in the frac-
tional precision of its magnetic moment. The BASE collaboration has
constructed and commissioned a new experiment at the Antiproton
Decelerator (AD) of CERN. This article describes and summarizes the
physical and technical aspects of this new experiment.
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1 Introduction

The invariance of the physical interactions under the combined charge parity and
time reversal (CPT) transformation is one of the basic cornerstones of the Lorentz-
invariant local quantum field theories of the Standard Model (SM). It states that
the physical interactions under the combined transformation of charge conjugation
(C), parity transformation (P) and time reversal (T) are identical. As consequence,
particles and their conjugate antiparticles have identical masses, lifetimes, charges
and magnetic moments, but the latter two with opposite sign. Therefore, precise
comparisons of fundamental properties of antiparticles and their matter conjugates
constitute stringent tests of CPT invariance.
Despite its importance in the SM, direct high-precision tests of CPT symmetry

are scarce (see Fig. 1). A widely recognized CPT-test was carried out by comparing
decay channels of the neutral mesons K0/K̄0 to charged and neutral pions. Thereby,
their relative mass difference was constrained to be less than 10−18 [1,2]. In other
efforts, experiments with single particles in Penning traps have reported as well on
tests of CPT invariance with great precision. By using the elegant continuous Stern-
Gerlach effect for the non-destructive detection of spin eigenstates of single particles
in Penning traps, electron and positron (g − 2) values were compared with better
than 4 ppb precision, which allowed to compare their g-factors with δg/g ≈ 2×10−12
uncertainty [3,4]. A recent improvement in the measurement of the electron g − 2
value opens the exciting perspective to improve this test by at least a factor of 10 [5].
Another precise test was performed by comparing the g− 2 values of μ+ and μ− in a
storage ring with a fractional precision of 3.7×10−9 confirming CPT invariance [6,7].
However, the muon g-factors deviate by 3.6 standard deviations from the Standard
Model prediction, which has been interpreted to be caused by coupling to dark gauge
bosons [8,9]. Currently, efforts are in progress to repeat these measurements with
higher precision to resolve or confirm this deviation [10,11].
The most precise comparisons of matter/antimatter pairs in the baryon sector are

measurements of the proton and antiproton charge-to-mass ratios [12,13]. These were
first performed at CERN’s low-energy antiproton ring LEAR by the TRAP collabora-
tion by measuring the cyclotron-frequencies of antiprotons and protons νc,p̄/νc,p [14].
Later, a negatively-charged hydrogen ions (H−) was used as a proxy of the pro-
ton, which allowed to increase the relative precision of the cyclotron frequency ratio
νc,p̄/νc,p to 9.0 × 10−11 uncertainty [12]. The result, initially within a one σ uncer-
tainty consistent with CPT invariance, was later corrected by a polarization shift of
the H− ion yielding a 1.8σ deviation from the Standard Model prediction [15,16].
Recently, we carried out a new comparison of the proton and antiproton charge-
to-mass ratios in the BASE apparatus using also antiprotons and H− ions. By using
adiabatic shuttling for the particle exchange [17] and sideband-coupling techniques for
the cyclotron frequency measurements [18], we were able to measure 6500 frequency
ratios within 35 days and obtained (q/m)p/(q/m)p − 1 = 1(69) × 10−12, which is in
excellent agreement with CPT invariance [13]. As our measurements were carried out
at lower cyclotron frequencies compared to Ref. [12], it provides a four times higher
energy resolution to CPT violating effects [13,19,20].
In addition to these efforts, several collaborations at CERN’s antiproton decel-

erator (AD) [21] target precision spectroscopy of the electromagnetic properties of
antihydrogen [22–24]. As its matter-counterpart hydrogen is one of the best under-
stood composite systems in modern fundamental physics, comparisons of its prop-
erties to antihydrogen constitute a new branch of highly-sensitive CPT tests. The
1S-2S transition frequency in hydrogen was measured with a relative uncertainty of
4.2 × 10−15 [25] using a cold beam of hydrogen atoms. First measurements of this
transition in antihydrogen are planned to be carried out in magnetic gradient traps.
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Fig. 1. Overview of different high-precision tests of CPT invariance. The black bars represent
the relative precision of performed measurements. BASE plans to improve the antiproton
charge-to-mass ratio and the antiproton g-factor up to the precision shown by the respec-
tive gray bars. Other experiments are planning to perform CPT tests by spectroscopy of
antihydrogen. The relative uncertainties shown as white bars are the best ones achieved in
hydrogen for the respective transitions. For details see the text.

By using hydrogen, relative precisions on the order of 10−12 have been achieved in
such systems [26]. Another appealing possibility to perform high-precision tests of
CPT invariance is the comparison of the ground-state hyperfine-splitting (GS-HFS)
of hydrogen and antihydrogen. By using a MASER, the hydrogen GS-HFS transition
has been measured with a fractional precision of 0.7 ppt [27]. In case of antihydrogen
first hyperfine transitions have been recently observed using appearance mode anni-
hilation spectroscopy in a magnetic gradient trap by the ALPHA collaboration [28].
In parallel the ASACUSA collaboration reported on the first production of a beam
of antihydrogen atoms [29] using a cusp trap. This is an important milestone towards
antihydrogen spin transition spectroscopy using Rabi’s molecular beam technique and
to measure the GS-HFS transition frequency with sub-ppm precision.
In our experiment, we aim at performing a sensitive test of CPT invariance by

a high-precision comparison of the magnetic moments of the proton μp and the
antiproton μp

μp/p = ±
gp/p

2
μN . (1)

The determined quantity in our measurements is the dimensionless g-factor, which
expresses the magnetic moment in units of the nuclear magneton μN = qp�/2mp,
with qp and mp being the proton’s charge and mass, respectively.
For this purpose, we developed an apparatus capable of a statistical detection

of spin-flips of single protons in a Penning trap by utilizing the non-destructive
continuous Stern-Gerlach effect [30]. Using this apparatus, we reported on the first
observation of spin flips with a single trapped proton [31], which resulted in a
direct measurement of gp with a fractional precision of 8.9 ppm [32], see Fig. 2.
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Fig. 2. Overview on measurements of the proton (blue) [32,33,36,39] and the antiproton
magnetic moments (orange) [37,40] and their relative uncertainties. BASE aims to reach a
relative uncertainty of δg/g = 10−9 for the antiproton by using the double-trap method. For
details see text.

A measurement of gp with a relative uncertainty of 2.5 ppm was reported by another
group [33]. These measurements were carried out in a Penning trap with a strong
superimposed magnetic inhomogeneity, which ultimately limits the achievable preci-
sion. To overcome these limitations we developed methods to observe single transitions
of the proton spin [34] and demonstrated the application of the double Penning-trap
technique with a single proton [35] for the first time. This series of developments cul-
minated in the first direct high-precision measurement of the g-factor of the proton
with a fractional precision of 3.3 ppb [36], which is the most precise measurement
of gp to-date. As the measurements are based on spectroscopy of a single particle
in a Penning-trap system, the same methods can directly be applied to measure the
magnetic moment of the antiproton, which is only known with a fractional precision
of 4.4 ppm [37]. Thus, by applying the double Penning-trap technique [38] to the
antiproton, a thousand-fold improved test of CPT invariance with baryons will be
provided.
Lorentz- and CPT-violating terms are introduced into the SM in the framework

of the Standard Model Extension (SME) [20]. There, the sensitivity of different CPT
tests is discussed using the measure rj = ΔE/E, where ΔE is the upper limit for
the energy difference between given conjugate matter/antimatter systems and E the
energy-eigenvalue of the full relativistic Hamiltonian describing the system. For the
comparison of K-meson masses this figure of merit is rK = |mK0 − mK0 |/mK0 ≈
0.6 · 10−18 [41]. In Penning trap experiments r translates to r = hΔν/mc2, where Δν
is the limit on the difference of the measured frequencies for the particle/antiparticle
pair under investigation [42]. By applying this figure of merit to the electron/positron
g− 2 comparison, for example, re,g = 1.2 · 10−21 is obtained. Although the fractional
precision achieved in the experiment is less precise than in the case of ΔmK0/mK0 ,
this lepton g − 2 comparison is 50 times more sensitive with respect to CPT
violation in the SME framework. The figure of merit for a 10−9-comparison of the
magnetic moments of the proton and the antiproton would lead to rp,g ≈ 10−25,
and thus provide one of the most stringent tests of CPT invariance performed with
baryons.
To achieve this appealing goal we commissioned a new experiment called BASE

(Baryon Antibaryon Symmetry Experiment) at the antiproton decelerator facility
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of CERN. The BASE apparatus [43,44] has evolved from our proton double-trap
experiment installed at the University of Mainz [32], but contains significant mod-
ifications and improvements. In addition, the apparatus has been adapted to allow
injecting antiprotons from the AD. The new developments feature a reservoir trap [17],
which allows experimental operation even during accelerator shutdown, as well as a
cooling trap for faster g-factor measuring cycles. Further, single particle detection
systems with greatly improved sensitivity were developed, thus allowing faster single
particle frequency measurements.
This paper is dedicated to describe the physics principles and the technical realiza-

tion of BASE. The experimental principle of the magnetic moment measurement and
the double-trap method are explained in Sect. 2. The experimental setup is described
in Sect. 3. The methods and procedures to prepare single antiprotons are presented
in Sect. 4. First results of frequency measurements with single antiprotons and the
measurement method used in [13] are reported in Sect. 5. Finally, the measurement
prospects of the experiment are discussed in Sect. 6.

2 Experimental principle

The fundamental measurement principles of BASE go back to an elegant set of tech-
niques developed by Dehmelt et al. for the high-precision comparison of the electron
and positron g-2 values in a Penning trap [3,30,45]. By using the relation

g

2
=
νL

νc
, (2)

only the frequency ratio of the spin-precession frequency νL, also called Larmor
frequency, to the cyclotron frequency νc has to be determined. To measure the
cyclotron frequency, highly-sensitive image-current detection systems are used to
directly measure the motional frequencies of a single trapped particle. The spin-
precession frequency is obtained using the continuous Stern-Gerlach effect, which is
a non-destructive measurement technique to observe spin quantum transitions of sin-
gle trapped particles via a change of the axial oscillation frequency νz. Exciting spin
transitions with an external drive and measuring the spin-transition probability as a
function of the excitation frequency allows to determine the spin-precession frequency.
In the following, the aspects relevant for the proton/antiproton magnetic moment

measurements are described. In particular, the challenges of the application of this
method to the proton and antiproton and the advantage of applying the double
Penning-trap technique [38] to reach a precision on the 10−9 level are emphasized.

2.1 Image-current measurement of the free cyclotron frequency

2.1.1 The Penning trap

Using only single particles with small motional amplitudes and long observation times,
the Penning trap is a well-suited tool for high-precision measurements of the funda-
mental properties of charged particles [46]. Such a trap consists of a superposition
of a magnetic field B = B0ez for the radial confinement and an electric quadrupole
potential to constrain the particle’s motion along the z-axis:

V (ρ, z) = VR C2(z
2 − ρ2/2), (3)

which is in the ideal case formed by three perfectly-aligned hyperbolic electrodes, one
ring electrode and two endcap electrodes of infinite size. The ring voltage VR denotes
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Fig. 3. (a) Cut view of a cylindrical Penning trap with five electrodes. The ring electrode
(red), the correction electrodes (orange), the endcaps (yellow), and the insulation spacers
(grey) are shown. (b) The composition of the motion of a particle inside a Penning trap from
its three independent eigenmotions, the axial (blue), the magnetron (red), and the modified
cyclotron motion (green), is shown. For details see text.

the potential difference between the ring and the endcap electrodes, and
√
1/C2 is a

trap specific length.
BASE uses cylindrical five-electrode Penning traps with an orthogonal, compen-

sated design [47] shown in Fig. 3(a). The two additional electrodes in between the
ring and endcap electrodes are called correction electrodes. A fraction of the ring
voltage VC = TR · VR is applied to them. By a proper choice of the trap geometry
and by adjusting the tuning ratio TR, the next higher-order potential perturbations
C4 and C6 in the expansion of the potential V (0, z) = VR

∑
j C2jz

2j are set to zero
simultaneously. Orthogonality means that the coefficient C2 is independent from the
tuning ratio TR [47]. Using such a compensated trap and cooling the particles to
low motional amplitudes ensures that frequency shifts due to higher-order potential
terms are negligible and that accurate high-precision measurements can be carried
out.
The trajectory of a trapped particle is described by a superposition of three in-

dependent eigenmotions [48], see Fig. 3(b). The electric potential generates the axial
motion, a harmonic oscillation along the magnetic field lines with eigenfrequency:

νz =
1

2π

√
2C2VR

q

m
, (4)

where q/m denotes the charge-to-mass ratio of the trapped particle. In the BASE
apparatus the axial frequency of protons/antiprotons is in the range of 540 kHz to
680 kHz. The trajectory in the radial plane is composed of two independent motions,
the modified cyclotron motion, which is the result of the free cyclotron motion being
affected by the radially outwards pulling electric field, and the magnetron motion, a
slow drift motion in the crossed static fields. The respective eigenfrequencies ν+ and
ν− are given by:

ν± =
νc

2
±
√
ν2c
4
− ν

2
z

2
· (5)

ν+ is mainly defined by the magnetic field B0 = 1.945T and is 29.65MHz, whereas
ν− ≈ C2Vr/(2πB0) is typically at 7 kHz. Note that the magnetron motion is meta-
stable [48], but the radiative decay rates on the order of 10−15Hz are insignificant
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Fig. 4. Illustration of the image current detection priciple. (a) The particle induces an image
current ip in the trap electrodes, which is converted to a voltage drop using a resonant tuned
circuit. (b) A particle in thermal equilibrium with the detection system can be represented
by an equivalent series tuned circuit, which shunts the thermal noise of the detection system
at the motional frequency of the particle. For details see text.

compared to typical measuring times so that the mode can be considered as
stable.
The free cyclotron frequency of a trapped charged particle is related to the three

independent eigenmotions via the invariance theorem [49]:

ν2c = ν
2
+ + ν

2
− + ν

2
z . (6)

Hence, the free cyclotron frequency can be determined by measuring the three eigen-
frequencies of the trapped charged particle. The invariance theorem is robust with
respect to first-order perturbations such as a misalignment of the trap axis with
respect to the magnetic field, and elliptic distortions of the electric potential.

2.1.2 Image current detection

To measure the motional frequencies of single trapped protons and antiprotons,
detection systems for non-destructive measurements of image currents are used [45].
The detection principle is illustrated in Fig. 4(a) for the axial motion. The oscillat-
ing charged particle induces an image current in the trap electrodes, which is on the
order of fA [45]. By using a large impedance, this small current signal is converted to
a detectable voltage. To this end, a superconducting inductor L connected in paral-
lel to the trap compensates its parasitic capacitance C to form a tuned circuit with
resonance frequency νres:

νres =
1

2π

√
1

LC
· (7)

On resonance, the circuit acts as a parallel resistance Rp:

Rp = 2πνrQL· (8)

where Q is the quality factor characterizing the relative energy loss per oscillation
cycle. A particle tuned to the detector’s resonance frequency is cooled resistively with
the damping constant

γ =
q2Rp

D2m
, (9)

where D, the effective electrode distance, is a specific length depending on the size
of the trap and the detailed pick-up geometry. The energy dissipation of an excited
particle in the detector is used to detect a single particle. For this purpose, the
transient signal is amplified with a cryogenic low-noise amplifier and processed by a
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Fig. 5. Detection of the image-current signal of single particles in the BASE Penning-trap
system. (a) A single antiproton is excited with an rf-drive at νrf = 1290538Hz ≈ 2νz
and the power dissipation of the excited particle is observed at the frequency νrf/2 in the
FFT-spectrum. (b) A single antiproton in thermal equilibrium with the detection system
generates a short at its axial frequency. A dip signal with 25 dB signal-to-noise ratio is
observed.

Fast Fourier Transform (FFT) spectrum-analyzer. Figure 5(a) shows the FFT signal
of an axially excited single trapped antiproton tuned to resonance with one of our axial
detectors. Once cooled to thermal equilibrium with the detection system, the particle
acts as an equivalent LC series circuit with inductance lp = mD

2/q2 and capacitance
cp = 1/lp(2πν)

2, as shown in Fig. 4(b) [45]. The particle shunts the thermal noise
of the detector at its eigenfrequency, thus resulting in a so-called particle dip which
is shown in Fig. 5(b). By performing a best fit of the well-known resonance line to
the measured FFT spectrum, the axial frequency νz is extracted. The advantage
of this method is that the particle’s resonance frequency is measured at thermal
amplitudes of about 10μm, which reduces systematic frequency shifts due to trap
imperfections [48]. For small particle numbers the line-width Δν of the dip-signal
(FWHM) can be calculated from the impedance of the equivalent circuit and is given
as [45]:

Δνz =
N

2π
γ =

N

2π

q2Rp

D2m
, (10)

where N is the number of trapped particles.

2.1.3 Sideband coupling

To measure the motional frequencies of the radial modes with the axial detection
system, sideband coupling is applied [18]. A quadrupolar rf-drive with an electric
field

Erf = E0 sin (2πνrf t) (zêρ + ρêz) (11)

is irradiated to the trap. Here, E0 denotes the electric field amplitude and νrf =
ν±∓νz the drive frequency which couples the modified cyclotron (magnetron) motion
to the axial motion. This results in a periodic exchange of energy between the two
modes, leading to an amplidute-modulated axial motion:

z(t) = z0 sin

(
1

2
Ωt

)
cos (ωzt+ φz) , (12)
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where Ω is the Rabi frequency, which on resonance reads Ω0 = qE0/(4πm
√
ν±νz) or

in case the coupling drive is detuned by δ± = νrf − ν± ± νz, Ω =
√
Ω20 + 4π

2δ2±. The
periodic exchange of energy between the axial and magnetron mode using a particle
with a well-defined initial magnetron radius and thermal energy in the axial mode
is shown in Fig. 6. Here, the axial amplitude is measured by the signal strength of
the peak signal after irradiating the sideband drive at the frequency νrf = νz + νm
for a certain time. The dynamics depict the amplitude-modulated motion with a full
exchange period of 93.2ms in this case. The quantitative behavior of the coupled
motion is comparable to a quantum mechanical two-level system and can be inter-
preted as “classical Rabi oscillations”.

Sideband coupling can be used to cool the radial motions. To this end, a coupling
drive is applied until the radial energy has dissipated due to the damping of the axial
mode. Thereby, both coupled modes reach equilibrium with the thermal bath of the
detection system. This situation is reached when the average quantum numbers 〈nz〉
and 〈n±〉 are equal [48]. By assuming that the axial detection system is at temperature
Tz, the other modes are cooled to [18]:

T± =
ν±
νz
Tz. (13)

Thus, the magnetron mode can be cooled to a small fraction of the temperature of the
axial detection system, whereas the sideband cooling limit of the modified cyclotron
mode is a factor of 45 larger than Tz.

The Fourier spectrum of the coupled amplitude-modulated motion is composed
of the two sideband frequencies νl and νr:

νl,r = νz − δ
2
±
√
Ω20
4π2
+ δ2. (14)
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Fig. 7. Schematic of the magnetic bottle: a) Ferromagnetic ring electrode and magnetic
field lines. b) On axis magnetic field of the magnetic bottle.

By combining a measurement of these sideband frequencies and an independent mea-
surement of the axial frequency, the modified cyclotron frequency is obtained as

ν+ = νrf + νl + νr − νz. (15)

The magnetron frequency can either be measured in a separate sideband frequency
measurement, or simultaneously by sideband coupling of the “cyclotron-dressed
states” to the magnetron mode [50]. Thereby all three eigenfrequencies of the par-
ticle have been determined and the free cyclotron frequency νc is obtained via the
invariance theorem in Eq. (6).

2.2 Measurement of the Larmor frequency

2.2.1 The continuous Stern-Gerlach effect

The spin precession of trapped particles is not accompanied by a detectable image
current, thus the Larmor frequency νL cannot be directly observed with our detection
systems. A solution for the non-destructive measurement of νL is provided by the con-
tinuous Stern-Gerlach effect, which was introduced by Dehmelt and collaborators [30].
In this scheme a magnetic field inhomogeneity of the form

Bz(ρ, z) = B0 +B2(z
2 − ρ2/2), (16)

a so-called “magnetic bottle” is superimposed on the trap by introducing a ferromag-
netic ring electrode, see Fig. 7. Thereby, a magnetic potential Φ = −µ ·B(z) is added
to the axial electrostatic potential of the trap. This couples the magnetic moment of
the trapped particle to its axial oscillation frequency, and thus, a measurement of
νz enables the non-destructive detection of the spin-eigenstate. This is illustrated in
Fig. 8. In the “spin-down”/“spin-up” states the antiproton experiences an effective
axial potential represented by the red and the blue solid line, respectively. A spin flip
causes an axial frequency shift of

Δνz,SF =
1

2π2
μp̄B2

mp̄νz
, (17)
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Fig. 8. Illustration of the continuous Stern-Gerlach effect for a single antiproton. (a) The
effective potential of the axial motion for the spin-down (red) and spin-up state (blue)
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2 is shown. The
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(b) Calculated signal amplitude relative to the noise amplitude of the detection system at its
resonance frequency with particle in spin-down (red) and spin-up state (blue). In the BASE
apparatus, the axial frequency difference due to a spin flip is only 231mHz out of 549190Hz.
For details see text.

where μp̄ and mp̄ denote magnetic moment and mass of the antiproton, respectively.
The axial frequency shift caused by the continuous Stern-Gerlach effect scales linearly
with the strength B2 of the magnetic bottle and the ratio μ/m, the latter being ex-
tremely small for the proton/antiproton-system. Compared to measurements dealing
with magnetic moments on the level of the Bohr magneton, such as in the electron-
positron system [3] or electrons bound to highly charged ions [51–53], the proton
magnetic moment is approximately 660 times smaller. Therefore, we superimpose a
strong magnetic bottle of B2 = 300 000T/m

2 to one of our traps, called analysis trap,
which is a 2000-fold and 30-fold increase in the magnetic bottle strength compared to
the electron/positron g-2 measurements [3] and g-factor measurements of electrons
bound to highly-charged ions [51–53], respectively. Under these extreme magnetic
conditions, an antiproton spin flip changes the axial frequency in the analysis trap by
231mHz out of about 549 kHz.
Once the non-destructive detection of spin transitions is established, the Larmor

frequency is obtained by measuring the spin transition rate as a function of the
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frequency νrf,s of an irradiated spin flip drive. The Larmor frequency νL can be
extracted from the well understood line shape [54,55].

2.2.2 Axial frequency stability in the magnetic bottle

In addition to the spin magnetic moment μp̄, a trapped antiproton has a magnetic
moment due to its radial angular momentum μ± = q/2mL±, thus the total axial
frequency change in presence of a magnetic bottle results in [31]:

Δνz =
1

4π2mp νz

B2

B0
hν+

[(
n+ +

1

2

)
− ν−
ν+

(
n− +

1

2

)
+ s
g

2

]
, (18)

where the classical energies E± have been replaced by the energy terms of the quantum
harmonic oscillators hν± (n± + 1/2) with the quantum numbers n+ and n− for the
modified cyclotron and magnetron mode, respectively, while s = ± 1/2 denotes the
spin-quantum number.
A single quantum transition in the modified cyclotron mode Δn+ = ±1 changes

the axial frequency by 83mHz, and the axial frequency shift caused by three cy-
clotron transitions is already larger than the one induced by a spin transition. As
cyclotron transitions are electric dipole transitions, fluctuations in n+ caused by an
electric-field noise density on the level 300 nVm−1Hz−1/2 makes the clear identifica-
tion of single spin-transitions impossible. Reducing the noise amplitude to carry out
the spin-state identification out at a constant n+ constitutes a major challenge in
proton/antiprotons magnetic moment measurements.
In the trapped-ion quantum information community, heating rates of single par-

ticles in rf-traps and Penning traps have been observed to exceed the ones expected
from the density from thermal resistive noise present on the electrodes [56,57]. The
increased noise density is referred to as anomalous heating and originates from sur-
face adsorbates, which was experimentally demonstrated by in-situ cleaning of the
electrodes of an rf-trap with Ar+ ion beam bombardment, which decreased the heat-
ing rate by a factor of 100 [58]. The details of this mechanism is however not yet
understood as the observed heating rates and the experimental parameters such as
trap surface properties, temperatures and the particle-surface distance d vary over
a large range. Several surface-adsorbate based models have been developed which
exhibit different heating rates scaling with d [59], and 1/d4 is a frequently quoted
distance scaling [60].
Our analysis trap in the Mainz proton experiment shows also anomalous heating

in the cyclotron mode, which can be observed by axial frequency fluctuations in the
magnetic bottle [34]. We extract a normalized electric-field noise density ωSE (ω) of
3× 10−9V2/m2 at n+ ≈ 600 and 1.8mm trap radius, which follows the 1/d4 scaling
trend of the spectral noise density observed by the rf-trap community [56,59,60].
For proton/antiproton spin-flip experiments, we determine the standard devia-

tion of the frequency difference of subsequent axial frequency measurements in the
magnetic bottle δνz,i = νz,i − νz,i−1, further called axial frequency fluctuation Ξz:

Ξz =

√√√√
N∑

i=2

1

N − 1 (δνz,i)
2
. (19)

This quantity is compared to the frequency shift induced by a spin-flip Δνz,SF. In
case Ξz has about the same magnitude as Δνz,SF unambiguous detection of the spin
state is not possible. However, in this case the Larmor frequency can be obtained
by using a statistical method to measure the spin transition probability, which was
developed by members of the BASE collaboration [31].
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Fig. 9. First indirect detection of proton spin-flips from Ref. [31]. The cummulative evolution
of the frequency fluctuation ΞSF and Ξref with and without spin-flip drive is shown as function
of the number of measurement cycles. The difference of the converged values of 47±4.5mHz
corresponds to a spin flip probability of PSF = 47± 7%.

2.2.3 Statistical spin-flip detection

Driving spin transitions in between axial frequency measurements increases the back-
ground axial frequency fluctuation and allows an indirect observation of spin transi-
tions as shown in Fig. 9. Here, the increase of the axial frequency fluctuation from
Ξref ≈ 150 mHz to ΞSF ≈ 190mHz while irradiating a resonant spin-flip drive al-
lowed to observe spin-transitions of a single proton for the first time [31]. To obtain a
Larmor resonance, the axial frequency fluctuation Ξ is determined for different spin-
flip drive frequencies νrf close to νL in addition to a reference measurement without
rf-drive Ξref . This allows to extract the spin-transition probability as function of νrf
by the increased axial frequency fluctuation [31,32]:

Ξ(νrf ) =
√
Ξ2ref + PSF(νrf)Δν

2
z,SF , (20)

where PSF denotes the spin-transition probability at the drive frequency νrf :

PSF(νrf) =
1

2

(
1− exp

(
−1
2
Ω2Rt0χ(νrf))

))
. (21)

Here ΩR = 2πνLbrf/B0 denotes the Rabi frequency with the magnetic drive ampli-
tude brf , irradiation time t0 and the line shape of the Larmor resonance χ(νrf), details
are discussed in [54,55]. In general, the particle coupled to the axial detection system
passes through all thermal states with the rate γ, which causes a variation of the
amplitude and thereby also the average magnetic field experienced by the particle in
the magnetic bottle. Thus, the resulting line shape becomes a convolution of the ther-
mally distributed axial energy and the unperturbed Rabi resonance. The statistical
average of the Larmor frequency becomes

〈νL〉 = νL,0
(
1 +
B2

B0

〈
z20
〉)
, (22)
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Fig. 10. Larmor resonance of a single proton measured with the statistical method in
the analysis trap [32]. The solid line represents the fit of the resonance line shape to the
data. The line width parameter of the resonance δνL is 9 kHz and the Larmor frequency
νL = 50.064 971(91)MHz is extracted with a relative precision of 1.8× 10−6.

so that the line width generated by the magnetic bottle can be characterized by the
parameter δνL:

δνL = νL,0
B2

B0

〈
z20
〉
= νL,0

B2

B0

kBTz

4π2mν2z
, (23)

where kB denotes the Boltzmann constant and the equipartition theorem was used to
replace

〈
z20
〉
. Due to the strong magnetic bottle required to observe antiproton spin

flips, the line shape for the weak coupling limit δνL � γ derived in [55] holds:

χ(νrf ) =
Θ(νrf − νL,0)

δνL
exp

(
−νrf − νL,0

δνL

)
, (24)

where Θ is the Heaviside step function. In this case, the resonance shape directly
depicts the Boltzmann distibution of the axial energy of the trapped particle, as
shown in the Larmor resonance of a single proton in Fig. 10. The sharp edge of the
resonance corresponds to an axial energy Ez of zero. The resonance curve has a line
width parameter δνL = 9kHz resulting from B2 = 29.7T/cm

2 and an effective axial
temperature of Tz = 2.5K. Here, negatively phased feedback cooling was applied to
reduce the effective temperature of the particle below the thermal limit [61], which
reduces the line width. From a fit of the line shape to the data, νL was determined to
50.064 971(91)MHz with a relative precision of 1.8×10−6. In this way, νL was derived
in the first direct measurements of the proton and antiproton magnetic moments [32,
33,37] using only single inhomogeneous Penning trap.
The resolution of this kind of Larmor-frequency measurements in the analysis trap

is fundamentally limited by the line width, which is defined by the product of the
magnetic inhomogeneity B2 and the axial temperature Tz. Clearly, this precision limit,
which is at the ppm level, can be overcome by decreasing B2 significantly during the
frequency measurements. This is realized in the double Penning-trap method for the
measurement of magnetic moments by transporting the particle adiabatically from
the magnetic bottle into a trap with a much more homogeneous field to carry out the
frequency measurements [38].
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Fig. 11. The double trap system used for the proton magnetic moment measurement re-
ported in [36]. An analysis trap with a magnetic bottle of 29.7T/cm2 is used for the spin-state
analysis and the precision trap with a residual magnetic field inhomogeneity of 0.4mT/cm2

is used for precise frequency measurements. The strength of the magnetic field on the axis
of the trap system is shown as well. For details see text.

2.3 Double-trap method

In the double Penning-trap measurement scheme [38] one of the two traps used is
the analysis trap, as introduced above, with the strong superimposed magnetic bottle
for spin-state readout. The magnetic field in the second trap, the precision trap, has
an inhomogeneity which is about 100 000-fold lower due to the spatial separation
from the analysis trap. The double Penning-trap system used in our 3.3 ppb proton
magnetic moment measurement [36] is shown in Fig. 11. Here, the residual B2 in the
precision trap is only 0.4mT/cm2, a factor of 75000 times smaller than in the analysis
trap. Thereby, the line width parameter δνL of only 0.55 Hz allows to determine νL
with ppb precision. Due to the small δνL in the precision trap, the line shape of
the resonance in the strong coupling limit δνL � γ is given in [55], which can be
interpreted as the statistical average of the individual Lorentzian line shapes of all
thermal states:

χ(νrf ) =
δν2L/(πγ)

(νrf − νL,0 − δνL)2 + 4π2(δν2L/γ)2
· (25)

Note that the resonance frequency is shifted by δνL. However, the shift cancels out,
as the frequency ratio νL/νc is measured and the cyclotron frequency is shifted by
the same relative amount as νL.
With the lower line width compared to the single-trap method, it is obviously de-

sired to measure the magnetic moment with this measurement scheme. However, the
strong advantage of this method comes with a challenging prerequisite for its applica-
tion: The unambiguous identification of the spin state of a single proton/antiproton
in the analysis trap. In the double trap measurement scheme, first, the spin state is
analyzed in the analysis trap. Afterwards, the particle is transported to the precision
trap, where the cyclotron frequency νc is measured and a magnetic rf-drive is applied
to flip the spin. Subsequently, the particle is transported back to the analysis trap
and the spin state is analyzed again, so that the spin-flip information for the Larmor
resonance is obtained. Thus, it is essential to know the spin state before moving the
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Fig. 12. g-factor resonance of a single proton measured with the double-trap technique
from Ref. [36]. The black line represents a maximum-likelihood fit to the data. Note that,
the data points are shown for visualization and do not explicitly enter the fit. The width of
the obtained resonance is 12.5 ppb. The magnetic moment was determined to a precision of
3.3 ppb from this measurement. For details see text.

particle in to the precision trap, otherwise the application of the double-trap method
is impossible. By further suppressing spurious noise in the analysis trap combined
with resistive cooling of the particle to a sub-thermal cyclotron energy, an axial fre-
quency stability of Ξ = 55mHz has been achieved [34]. This allowed the first direct
observations of single spin transitions [34] with a single trapped proton. Shortly after,
we reported on the first demonstration of the double-trap method with a single pro-
ton [35], where spin-flips driven in the homogeneous field of the precision trap were
detected in the analysis trap.
The g-factor resonance of the first double-trap measurement of the proton mag-

netic moment is given in Fig. 12, showing the spin-flip probability for normalized
values of νrf/νc. The proton g-factor is extracted with an uncertainty of only 3.3 ppb
from this resonance, which is a factor 760 more precise than the measurements carried
out in analysis traps [32,33], and a factor of 3 smaller than the best indirect mea-
surement with the hydrogen maser [39]. By applying this scheme to a single trapped
antiproton, the current precision in its magnetic moment [37] can be improved by
three orders of magnitude.

3 Experimental setup

3.1 Antiproton beam production

The BASE experimental setup is located at the Antiproton Decelerator facility of
CERN, which is the worldwide only source for high-intensity pulses of low-energy
antiprotons [21]. To create antiprotons, protons are accelerated up to a momentum
of 26GeV/c using a linear accelerator, the Proton Synchrontron Booster (PSB), and
the Proton Synchrotron (PS) [62]. After acceleration, an intense pulse of 1013 protons
is focused on an iridium target which creates a highly divergent pulse of antiprotons
in pair production processes. The target is followed by a magnetic horn which serves
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Fig. 13. Top view of the integration of the BASE experimental zone in the AD facility is
shown.

as a collector lens. It allows to transfer about 50million antiprotons at 3.5GeV/c
momentum from the target into the AD, where antiprotons experience alternating
cooling and deceleration steps. To reduce the transverse emittance, stochastic cooling
is applied at the initial momentum of 3.5GeV/c and after the first deceleration step at
2.0GeV/c, and electron cooling at the lower momenta of 300MeV/c and 100MeV/c.
Eventually after a cycle length of 120 seconds, a bunch of about 30million antiprotons
with a kinetic energy of 5.3MeV and a pulse length of about 150 ns is transferred to
the experiments.
In order to supply BASE with antiprotons, a new ejection beamline and a new

experiment zone were constructed. A top view drawing of the integration of the BASE
experimental zone into the AD facility is shown in Fig. 13.

3.2 Overview of the BASE apparatus

The BASE apparatus is an extension of the Mainz proton double-trap experiment
which allows the injection and storage of antiprotons. In addition, it has several new
features implemented to improve the limitations of the proton double-trap measure-
ment. An overview of the BASE apparatus is shown in Fig. 14. A superconducting
magnet is housing the Penning-trap system inside a horizontal bore. The trap system
is placed inside a hermetically sealed cryogenic chamber, which is cooled to liquid
helium temperature by the two cryostats placed upstream and downstream of the
magnet. A horizontal support structure which is anchored on both ends to the liq-
uid helium stages of the two cryostats holds the trap chamber in the magnet bore
inside an isolation vacuum. The image-current detection systems for the frequency
measurements and a segment with cryogenic electronics and filters for the voltage
biasing of the trap electrodes are also located on the liquid helium stage next to the
trap chamber. The antiprotons are injected into the Penning-trap system through a
vacuum-tight degrader window, which also serves as a separator between the isolation
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Fig. 15. 3D model of the AD ejection beamline for BASE showing the magnets, beam
monitors, and the vacuum chambers. For details see text.

vacuum and the trap vacuum. A cryogenic beam monitor upstream of the traps is
used to align the antiproton beam to the trap center.

3.3 Antiproton transfer beamline

The design of the AD ejection beamline for BASE is shown in Fig. 15. MAD-X was
used for its design and to simulate its ion optical properties. The results of these
calculations are shown in Fig. 16. A dipole magnet is inserted into the AD ejection
beamline in order to switch between BASE and the other AD experiments. The AD
ejection beamline requires three dipole magnets with 50.4 degrees deflection and three
vertically focusing quadrupole magnets to keep the dispersion and the beam diameter
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at an acceptable level. To optimize the antiproton transport, the beamline has three
position-sensitive beam monitors consisting of a phosphor screen and a CCD camera
to observe the annihilation signal.
To avoid large magnetron and cyclotron radii of the captured particles, the an-

tiproton pulse has to enter the BASE apparatus parallel onto the axis of the magnetic
field with a narrow spatial distribution. Therefore, the focal point generated by the
last quadrupole magnet is placed inside the Penning-trap stack at a focal length of
1.5m. The diameter of the pulse is reduced from a maximum diameter of 50mm in-
side the quadrupole to less than 2mm at the focal point, which is sufficient compared
to the inner trap diameter of 9mm at the injection side. The beam dispersion was
matched to zero at the focal point in both planes.
The last combined horizontal and vertical corrector magnet behind the last dipole

magnet is used to steer the beam to the center of the trap. To check the position of the
incoming antiprotons inside the BASE apparatus, a cryogenic beam monitor placed
in front of the degrader window is used. It consists of four Faraday cups made from
a four-fold segmented plate with 50mm diameter and a 9mm hole in the center. To
ensure high sensitivity of the beam monitor, cryogenic silicon-based low-noise charge
amplifiers with a signal strength of 2.5V/pC are used for the readout. Using this beam
monitor, the antiproton beam can be reliably centered to the axis of the Penning-trap
system.

3.4 Superconducting magnet

A homogeneous magnetic field with high temporal stability is one of the key-
components of the experiment, since it defines the measured frequencies νL and νc.
Further, the suppression of external magnetic field fluctuations by using a solenoid as-
sembly with self-shielding geometry is of great importance for high-precision measure-
ments [63]. The shielding factor S describes the suppression of external magnetic field
fluctuations in the center of the superconducting solenoid by S−1 = 1+Bi/Be. For the
measurements reported here, BASE refurbished a spare magnet with a shielding factor
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S of about 10. The horizontal room-temperature bore of 150mm diameter houses the
Penning-trap system as shown in Fig. 14. The magnet is operated at a field strength
of 1.945T. By adjusting the shim coils, a spatial homogeneity of 0.25 ppm/cm around
the homogeneous center and a homogeneity of 5 ppm/cm in a cylindrical volume of
9mm diameter and 120mm length was obtained.
As the experiment is operated in the AD facility, it is exposed to external magnetic

field changes caused by the operation of the AD and the neighbouring experiments.
To increase the temporal stability for the high-precision measurements, a new self-
shielding superconducting magnet from Oxford Instruments has been installed after
the end of the AD physics run 2014. To further compensate for external magnetic
field drifts, a self-shielding coil [63] will be installed to stabilize the magnetic flux in
the Penning-trap chamber, and an external stabilization system based on a flux-gate
locked pair of Helmholtz-coils as described in Ref. [64,65] will be used for further sup-
pression. The combined shielding factor is expected to reach 500 to 1000, so that the
external magnetic field fluctuations can be reduced by about two orders of magnitude
compared to the current system. The new magnet was shimmed to a similar spatial
homogeneity with ΔB/B < 0.3 ppm of 1 cm3 volume at the homogeneous center and
to better than ΔB/B < 50 ppm in the volume covered by the Penning-trap stack. The
temporal stability of the magnetic field is better than (ΔB/B)(1/Δt) < 5×10−9 h−1.

3.5 Cryo-mechanical setup

Two cryostats with reservoirs for 35 l liquid nitrogen (LN2) and 35 l liquid helium
(LHe) each provide the cryogenic temperatures for the experiment. The assembly of
the LN2 and LHe stage of the experiment is shown in Fig. 17. Using a two cryostat
construction for a cryogenic experiment in horizontal geometry has the advantage
that the LHe stage can be anchored at both ends to the liquid-helium tanks without
the need for an additional support structure. This minimizes the conductive heat
load from the LN2 stage on the LHe stage and ensures a low power load on the LHe
reservoir.
The radiative load on the LHe stage is suppressed by thermal shields connected to

the LN2 tanks of the cryostats. Inside the cryostats, rectangular heat shields made out
of 8mm thick aluminum plates enclose the tail of the LHe tanks and the supports of
the 4K stage. In the magnet bore, an aluminum tube of 127mm diameter and 3mm
wall thickness is used as a radiation shield. It is mechanically anchored to the vac-
uum chambers at room temperature using a fibre glass disk as thermal insulation. As
thermal link, oxygen-free high conductivity (OFHC) copper braids of 600mm2 cross
section in total form a good connection to the cryostat heat shields. This compensates
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mechanical stress during cool-down to cryogenic temperatures. The complete LN2
stage is enclosed in 20 layers of multi-layer insulation (MLI) foil. Thereby, a temper-
ature of 80K at the bottom of the cryostat heat shield and 86K at the center of the
magnet bore heat shield are reached at a total load of 50W. The standing time of
the liquid nitrogen stage is about 70 h and 58 h for the upstream and downstream
cryostat, respectively. The downstream cryostat has a higher evaporation rate due to
the additional load from the trap biasing lines, in particular by the high-voltage lines.
The inlay of the liquid helium stage consists of a mechanical support, the cryogenic

electronics, and the Penning-trap chamber. The latter is a cylindrical indium-sealed
cryogenic vacuum chamber (71mm inner diameter, 234mm length) located at the
center of the 4K stage enclosing the Penning-trap system. The chamber is made
out of high-purity copper. A flange with cyrogenic feedthroughs, the so-called pin-
base, closes the chamber at the downstream side. All signals for the single-particle
detection systems, trap biasing, particle excitation, spin-flip drive and the catching
HV-pulses are connected to the Penning traps via the pinbase. On the upstream side,
the Penning-trap chamber is closed by the degrader flange, which has a stainless-steel
foil of 25μm thickness and 9mm diameter placed in the center. The foil is vacuum-
tight but transparent for the injection of 5.3MeV antiprotons. In addition, the flange
has a connection for a pinch-off tube. To achieve ultra-high vacuum in the Penning-
trap chamber, it is pumped out through this connection to a pressure of less than
10−6mbar. Subsequently, the pumping connection is pinched-off with a cold-weld
technique and the chamber is installed into the magnet bore. Placed in an isolation
vacuum and cooled by the liquid helium cryostats, the Penning-trap chamber forms an
independent vacuum system with ≈ 5K wall temperature. The residual gas pressure
in the chamber drops below the detection threshold of conventional vacuum gauges.
It is below of 10−14mbar [66] and can be only determined indirectly by the storage
time of the trapped antiprotons. We demonstrated that the storage time can exceed
one year [17].
The mechanical support of the Penning-trap chamber has been designed to be

symmetric with respect to the magnet’s center plane. Thereby, a tilt of the trap axis
relative to the magnetic field due to unequal deformation of the support structure
can be avoided. Two high-purity copper segments are attached to the Penning-trap
chamber on each side. Downstream they contain the single-particle detection systems
and cryogenic filters for the trap biasing lines, and upstream the beam monitor and
parts of the degrader assembly. As next element, two titanium tubes of 170mm length
and 98mm diameter with a titanium connection piece are placed on each side around
the copper parts in the magnet center. Despite its low heat conductivity at 4K,
titanium was selected for this part of the support structure due to its high stiffness
and low weight. At each end of the LHe stage a short copper tube of 30mm length
and 90mm diameter rests in the cryostat support structure. To prevent mechanical
stress due to the contraction while cooling down, the cryostat support structure is
attached to a slider on a ball bearing at the bottom of the LHe tank. The movement
of the slider compensates the mechanical contraction of the inlay.
To ensure a good thermal link of the trap and the superconducting detection

systems to the LHe tanks, the copper segments in the center of the LHe stage are
connected to the cryostats with two heat conductors made from annealed OFHC
copper rods of 16mm diameter. On the trap side they are bolted into the last copper
segment, and on the cryostat side clamps with OFHC copper braids complete the
thermal link to the LHe tank. The braids have a total cross section of 360mm2 and
125mm length. The thermal load on the liquid helium reservoirs by the cryogenic
inlay is estimated to be 90mW radiative load, 15mW conductive load due to wiring,
and 20mW power load from the cryogenic amplifiers. Considering the intrinsic heat
load of the cryostats, the LHe stage is designed to have a hold time of 120 h.
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Table 1. Probability p of a particle to hit the massive part of N out of the six copper
meshes of the mesh degrader. The meshes have an open area of 44%, therefore the highest
probability is obtained for N = 4. For details, see text.

N 0 1 2 3 4 5 6
p 1.09% 5.55% 16.51% 29.32% 30.07% 15.03% 2.44%

3.6 Degrader system

To decelerate the 5.3MeV antiprotons provided by the AD, a system of degrader foils
is used. Energetic antiprotons penetrate the degrader material, lose energy in inelastic
scattering processes, and are eventually stopped at a certain range. If the degrader foil
is chosen thin enough, low-energy antiprotons are transmitted and can be confined
partly in the Penning-trap system (see Sect. 3.7) by fast high-voltage pulses. It was
shown that the maximum efficiency for low energy antiproton transmission is reached
when 50% of the incoming particles are stopped in the degrader [67]. However, the
efficiency of the stopping process is quite sensitive to the choice of the degrader
material, as well as the thickness and the placement of the degrader components.
Moreover, accurate calculations of the stopping power are hampered by the lack of
experimental data of the empirical stopping power models at low energies [67,68].
To account for this, the degrader system of BASE, shown in Fig. 18(a), consists

of three elements. The first part provides a variable stopping power to compensate
uncertainties in the stopping power calculations and the thicknesses in the production
of the degrader foils. It consists out of 6 stacked copper meshes with a thickness of
2.5μm rotated by 15 degrees relative to each other. The grid structure of the mesh
(15.6μm, 44% open area) is much finer than the antiproton beam diameter, which is
typically 2mm at this position. The pattern generated by the mesh assembly shown
in Fig. 18(b) adds a large possible variation in stopping power with an equivalent
thickness of 0 to 24μm aluminium depending on the number of meshes 0 < N < 6
hit by each antiproton. The probability p for an antiproton to hit N of the meshes
are given in Table 1. It is equivalent to the fraction of the area covered by the mesh
material of N meshes. As scattering in the degrader foils increases the beam diameter,
the mesh assembly is placed directly in front of the Penning-trap chamber. The second
degrader is the 25μm stainless-steel vacuum window in the degrader flange. The last
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Fig. 19. Catching probability of 5.3MeV antiprotons as function of the thickness of the
aluminium degrader calculated with SRIM. The configuration in SRIM consisted of the
mesh degrader, the 25μm stainless steel window, and the aluminium degrader with variable
thickness. Particles with a trajectory not exceeding the trap radius of 4.5mm and with an
axial energy below 1 keV are considered as captured.

element is an aluminum foil directly in front of the upstream catching electrode with
the purpose of matching the total stopping power of the degrader system for obtaining
the maximum number of slow antiprotons. A calculation of the catching efficiency
using the simulation code SRIM is shown in Fig. 19. Antiprotons transmitted through
the degrader system with a kinetic energy below 1 keV and an orbit that does not
exceed the trap diameter can be confined by high-voltage pulses on the catching
electrodes. The total trapping volume of the catching electrodes is 50mm in the axial
direction and 9 mm in diameter, enclosing the reservoir trap of the Penning-trap stack.
In total, this degrader system has a catching efficiency better than 10−4 in a broad
range around the optimum thickness value. Compared to a single foil with exactly
matched stopping power, the maximum efficiency is a factor three less, but the range
in thickness with more than 10−4 efficiency is a factor of three higher. Compared to
tunable gas chambers [69], this system has slightly lower efficiency but it is robust,
simple, reliable and provides enough antiprotons for single particle experiments.

3.7 Penning-trap system

The Penning-trap system, shown in Fig. 20, is the heart of the experiment. It is in-
stalled in the homogeneous center of the superconducting magnet. The trap stack
consists of four cylindrical traps in a five-electrode orthogonal and compensated de-
sign [70]. The individual traps are interconnected by transport electrodes in an op-
timal length-to-diameter ratio. To prevent oxidation, all electrodes are gold-plated.
Compared to a classical double trap which consists of a precision trap (PT) and an
analysis trap (AT), two traps were added: a reservoir trap (RT) and a cooling trap
(CT). PT/RT and AT/CT have inner diameters of 9.0mm and 3.6mm, respectively.
All electrodes are machined with an absolute precision better than 5μm. The sapphire
rings used to separate the individual electrodes and to prevent electrical contacts have
a height of 3mm and a similar machining precision. The crucial parameters of the in-
dividual traps including the magnetic properties at each trap center are summarized
in Table 2.
Precision (PT) and analysis trap (AT) – These two traps are used to perform

double Penning-trap measurements. The PT is for precision frequency measurements,
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Fig. 20. Schematic of the BASE Penning-trap assembly. It consists of four cylindrical traps
interconnected by transport electrodes. Two traps, reservoir trap and precision trap, have
an inner diameter of 9mm, while the analysis trap and cooling trap have inner diameters of
3.6mm. The lower graph shows the on axis magnetic field of the trap assembly. The strong
inhomogeneity in the analysis trap is for spin state analysis, the smaller homogeneity in the
cooling trap for efficient cooling of the antiproton’s cyclotron mode.

Table 2. Geometry parameters and magnetic field gradients of the four Penning traps in
the BASE apparatus.

Trap Inner Diameter C2 (m
−2) B1 (T/m) B2 (T/m

2)

RT 9.0mm 18508 <0.010 <1
PT 9.0mm 18508 0.022 0.67
CT 3.6mm 116000 1.900 16 000
AT 3.6mm 116000 0.100 300 000

the AT for analysis of the spin state as explained in Sect. 2. The layout of the AT is
an exact copy of the well-working analysis trap used at our experiment at Mainz [32].
Compared to this system the inner diameter of the PT was modified from 7mm
to 9mm. This reduces the systematic shifts in cyclotron frequency measurements
caused by anharmonic potential and image charge corrections. In the BASE precision
trap, the systematic shift of the cyclotron frequency is only 40 ppt, which is 2.5 times
smaller than in our proton Penning-trap system in Mainz. Furthermore, the distance
between the centers of the PT and AT is increased from 43.7mm to 69.7mm, so that
magnetic field inhomogeneities in the center of the PT which are caused by the strong
magnetic bottle in the AT are reduced. The magnetic gradient term in the BASE PT
is B1,B = −0.022T/m, the bottle term is B2,B = 0.67T/m2, which is 4 and 6 times
smaller than in the trap used in [36].
Reservoir Trap (RT) – The RT functions in online operation as catching trap

to capture low energy antiprotons from the AD. Therefore, it is placed in between
two catching electrodes, which allow the application of DC and pulsed voltages of
up to 8 kV needed for capturing of antiprotons. In the period between two injec-
tion pulses, the captured particles are cooled by sympathetic cooling with electrons
and accumulate in the harmonic potential well of the trap and remain there dur-
ing the next catching pulse. Thus, several antiproton bunches can be stacked in
the RT until an antiproton reservoir of about 1000 particles has been accumulated.
Subsequently, the apparatus is disconnected from the ejection beamline and the RT
functions as a particle reservoir. Single particles can be non-destructively extracted
from the reservoir to supply the magnetic moment measurement cycle with single
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particles [17]. To maintain the reservoir, the entire trap is operated with uninter-
ruptable power supplies which last for 10 h during power-cuts. Thus, the RT enables
long-term storage of antiprotons and allows BASE to operate even during accelerator
shut-down periods and perform measurements when the magnetic noise in the AD hall
is low.
Cooling Trap (CT) – The purpose of the CT is fast and efficient cooling of the

cyclotron mode of the trapped antiproton. This is essential for single spin-flip experi-
ments to prepare particles with low cyclotron energies [34]. In the magnetic bottle, the
magnetic moment induced by the motional energy in radial modes E+,−/B0 is cou-
pled to the axial mode. Therefore, spurious noise in the trap at the modified cyclotron
frequency, which drives cyclotron quantum transitions, increases the axial frequency
fluctuation Ξz and reduces the spin-flip detection fidelity [34]. Three quantum jumps
in the cyclotron mode (ΔE = 180 neV) contribute axial frequency shifts larger than
that induced by a spin quantum jump. The cyclotron heating rates scale with the
average quantum number n+ of the cyclotron motion [43]. Thus, for a g-factor mea-
surement, efficient cooling of the cyclotron mode to low n+ is crucial. In the proton
double-trap system, a cyclotron energy of E+ = 150μeV (n+ ≈ 1200, T+ = 1.7K)
sets the threshold for single spin-flip experiments. Therefore, it is necessary to cool
the particle below the environment temperature [34]. In our measurements reported
in [36], preparation of cyclotron states with adequately low energy to detect single
spin transitions took on average about two hours. This was one of the limiting factors
of this experiment.
The CT combines several techniques in one trap to cool the cyclotron motion of the

trapped antiproton with high efficiency. It uses a ferromagnetic ring electrode made
out of nickel. With the chosen geometry, it provides a magnetic inhomogeneity of
B2,CT = 16000T/m

2, which allows to measure the cyclotron energy by the frequency
shift Δνz induced by the cyclotron Energy E+,

Δνz =
1

mνz

B2

B0
E+

1

4π2
· (26)

Thus, the magnetic bottle of the CT provides temperature resolution of dνz/dT+ =
5Hz/K. The trap is equipped with both an axial and a cyclotron detection system.
To provide a cyclotron-cooled antiproton the particle is prepared at the center of the
trap by cooling the magnetron and axial modes and measuring its axial frequency.
Afterwards, the cyclotron detector is tuned to the particle’s resonance frequency ν+
and thermalizes the cyclotron mode. Using a temperature calibration of the magnetic
bottle [71], the cyclotron energy can be determined in a subsequent axial frequency
measurement. In case the cyclotron energy is above the threshold for single spin-flip
resolution, the cycle is repeated. This principle is also used in the proton double-trap
system and the result of a cyclotron temperature measurement in the Mainz apparatus
is shown in Fig. 21. There, the cyclotron cooling and the temperature measurement
requires the use of both traps, the precision and analysis trap, respectively, and also
involves shuttling of the particle between the traps. The large diameter of the precision
trap required to reduce systematic shifts in the frequency measurements limits the
effective electrode distance of the cyclotron detection system and thereby its cooling
time constant. The possibility to perform both procedures in the CT eliminates the
delay due to the transport time, and the small inner diameter of the CT provides
a strong coupling of the cyclotron detector to the particle with a 4-fold increased
coupling constant compared to the proton system. The high quality of the axial
detection system used in this trap enables frequency measurements with 100mHz
resolution within averaging times of 10 s. Therefore, a cycle to thermalize the particle
and analyze its cyclotron temperature takes about 60 s and preparation of a particle
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Fig. 21. Measurement of the cyclotron energy in the analysis trap of the proton double-trap
system. A series of axial frequency measurements in the analysis trap after thermalizing the
particle with the cyclotron detector in the precision trap is shown in (a). A histogram of the
temperature corresponding to the cyclotron energy of the proton T = E+/kB is shown in (b).
From this distribution the temperature of the cyclotron detection system was determined to
be 5.6(4)K.

with a cyclotron temperature below 1K, which is stable enough to observe single spin
flips, will take a few minutes only. Thus, compared to a preparation time of two hours
in the proton g-factor measurements, the CT reduces the particle preparation time
by more than one order of magnitude.
Electron gun – Another important component which is implemented into the trap

stack is the field-emission electron gun. It consists of a sharp tungsten tip with a
high aspect ratio, which is placed close to an acceleration electrode. A biasing voltage
applied to the tip defines the energy of the extracted electrons. By applying voltages
between 500V and 1.2 kV to the acceleration electrode, electron currents in the range
of 10 nA to 350 nA are extracted. On one hand, the electron gun provides particles for
electron cooling of antiprotons [72]. On the other hand the electron current is used to
load the trap with protons. Electron impact on the degrader sputters hydrogen atoms
out of the surface. These particles are then electron-impact ionized in the center of
the RT, thus enabling the commissioning of the Penning-traps with protons.
Trap assembly – The mounting of the trap stack is shown in Fig. 22. The trap

electrodes are pressed together by two plates which are fixed on the upper and lower
end of a tripod made out of oxygen-free electrolytic (OFE) copper. The electron gun
is connected to the lower plate and the entire assembly is attached to the pinbase
flange by three OFE copper spacers. Coils to drive spin transitions are placed on
PTFE supports mounted to the tripod. This assembly is placed into the Penning-
trap chamber.

3.8 Single-particle detectors

All information about the trapped particles is provided by non-destructive detection
of image currents induced in the trap electrodes (see Sect. 2). For the BASE apparatus,
six highly sensitive superconducting detection systems [73,74] have been developed,
two for the measurement of the cyclotron frequencies at ≈29.65MHz in the PT and
the CT, as well as four axial detectors, one for each trap, operated in frequency ranges
between 540 kHz and 680 kHz.
Each detector consists of a superconducting NbTi coil in a metal shielding which

is attached to a cryogenic ultra-low-noise amplifier. In order to ensure high detec-
tion efficiency and to avoid electrical interference, all six detectors are placed in the
detection segment shown in Fig. 23 next to the trap chamber.
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Fig. 22. (a) Entire assembly of the core of the experiment including the Penning-trap stack,
the electron gun, spin-flip coils and the pinbase flange as 3D model. (b) A picture of the
assembled Penning-trap system.

3.8.1 Axial detection systems

The superconducting coils of the four axial detection systems are in toroidal design.
The coils are made out of three layers of 75μm PTFE insulated NbTi wire wound on
toroidal PTFE cores. They are mounted in a support which is inserted into cylindrical
housings made out of NbTi. Due to geometrical constraints defined by the geometry
of the apparatus, two different sets of axial resonators were designed. The first set has
a diameter of 41mm and 34mm length, and the second one with 47mm in diameter
and 40mm length. The small resonators are used for the PT and RT, while the bigger
ones are connected to the CT and AT. The inductances of the resonators are at 1.6mH
and 2.5mH, for the small and the big coils, respectively, the self capacitances being
at 11 pF. The quality factor of all four detection coils have been highly optimized.
When cooled to 4K, quality factors of 200 000 are achieved for the small coils, and
250 000 and 500 000 for the big coils, respectively. The coil with the highest Q value
is used for the AT. The Q values correspond to unloaded effective parallel resistances
Rp,u of several GΩ.
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Fig. 23. Electronics segment which houses the six cryogenic single particle detectors, four
axial detection systems and two detectors for the modified cyclotron frequency.

1 2

3
4

5

6

7 8

FET1

FET2

Varactors

1 Input
2 Varactor Bias
3 Gate 1 Bias
4 Gate 2 Bias
5 Drain Bias
6 SF Gate Bias
7 SF Drain Bias
8 Output

Fig. 24. Layout of the cryogenic amplifiers using two GaAs FETs: FET1 as common-source
input stage and FET2 as source follower in common-drain configuration. All connections
for biasing are filtered by RC-circuits. The detection systems for the axial and cyclotron
mode use the same amplifier layout, except that the cyclotron amplifiers have in addition
varactor diodes with biasing circuit (orange box), and a housing which separates the input
and output stage (gray box) to prevent feedback effects.

The layout used for the cryogenic amplifiers of the detection systems is shown in
Fig. 24. The amplifiers are based on GaAs field effect transistors (FET’s) with a high
impedance common-source input stage and a source follower for impedance matching
in common-drain configuration as output stage [75]. The input stage of the amplifiers
for the axial detection systems of the cryogenic amplifiers are based on NE25139
FET transistors with an input resistance of Rin = 8MΩ, input capacitance of Cin =
1.6 pF, and an equivalent input noise of 0.8 nV/Hz1/2 at 550 kHz to 0.65 nV/Hz1/2 at
1MHz. For impedance matching of the outputs, CF739 transistors are used. At typical
power consumptions of 2mW to 3mW, each amplifier provides a gain of about 15 dB.
The amplifier boards are made out of low-loss PTFE laminates with a loss tangent
<5 · 10−5 at 4K to minimize parasitic losses.
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Fig. 25. Noise resonance of the axial detection systems used in the RT.

Inductors and amplifiers are connected and decoupled by a coupling factor κ,
which is adjusted by tapping the coils at a certain winding ratio N2/N1, where N0 =
N1+N2 is the total number of turns, about 750 for the small and 1100 for the big coils.
This allows to adjust the effective parallel resistance of the detector Rp consisting of
Rin/κ

2||Rp,u. To obtain optimal frequency resolution in a short FFT averaging time,
we set κ in a way that the width of the axial frequency dips of a single antiproton in
each trap are in the range of 1Hz to 3Hz.
When connected to the trap system, the small detection systems have resonance

frequencies of 646 kHz (RT) and 689 kHz (PT), while the big detectors are at 545 kHz
(AT) and 585 kHz (CT), respectively. A noise resonance of the RT detection system
is shown in Fig. 25. A signal-to-noise ratio (SNR) of 32 dB at a quality factor of
Q = 11500 is achieved. With these parameters, the axial frequency can be determined
in a dip measurement with a fit uncertainty of 47mHz from an FFT spectrum with
only 30 s averaging time. With an independently measured coupling factor κ and
equivalent input noise en of the amplifiers, the noise resonances contain all information
required to determine the effective temperatures Tz of the detection systems. For all
detectors the extracted results are Tz ≈ 5.9(1.1)K, which is close to the physical
temperature of the apparatus.

3.8.2 Cyclotron detection systems

The detection systems for the modified cyclotron frequency are designed to match the
antiproton frequency of 29.65 MHz at a 1.945 T magnetic field. The main purpose of
these detectors is efficient cooling of the modified cyclotron motion. This requires the
maximization of the parallel resistance Rp, see Eq. (9). In addition, a low equivalent
input noise en amplifier is required to reach low effective detector temperatures and a
sufficiently high signal-to-noise ratio. This allows the application of negative electronic
feedback with a high feedback factor to decrease the effective particle temperature
below the thermal limit [61,76,77].
The design of the BASE cyclotron detection systems shown in Fig. 26 is based on

the general principles reported in [78] and the work described in [75]. Compared to the
detector developed in [75], superconducting NbTi solenoids instead of OFHC copper
solenoids are used. The coil is wound on a PTFE core with a diameter of 11.5mm and
a pitch of 1mm. Inductances are defined by the 14 pF parasitic trap capacitance, and
are on the order of 1μH. The coil is pressed into a cylindrical OFHC housing with
23mm inner diameter and 34mm length. The unloaded Q values of the solenoids are
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Fig. 26. 3D drawing of the cyclotron detector assembly. For details see text.

in the range of 9000 to 11000 at resonance frequencies of about 90MHz. Tuned to the
trap frequency, Q values up to 4500 are achieved. Compared to OFHC copper coils
in the same geometry, the series resistances were reduced by almost a factor of 3.
The amplifiers for the cyclotron detection systems are based on dual-gate low-

noise GaAs FETs [75]. They use the same concept as the axial detectors, a high-
impedance FET in common-source configuration for the input stage and a second
FET in common-drain configuration for impedance matching. The input stage FET
is a NE25139 transistor with an effective input impedance of Rin = 170 kΩ at 40 MHz
and an equivalent input noise of en,4K = 0.83 nV/Hz

1/2. In addition, the amplifier
hosts a MA46H072 varactor diode, which is connected in parallel to the resonator
with a 3.6 pF capacitor. This allows adjusting the detector’s resonance frequency by
650 kHz around 29.65 MHz to precisely match the particle’s cyclotron frequency
defined by the magnetic field.
Due to space constraints in the experimental setup, the two cyclotron detectors are

stacked on top of each other, the CT detector being closer to the trap (see Fig. 23). The
signal wires to the trap and the amplifier are made from annealed OFHC copper wire,
which has a resistance of 300 mΩ/m for a 30 MHz rf-signal at 4K. They contribute
about 60 mΩ series resistance and are a major limitation for the Q value. When
coupled to the trap and cooled to 4K, Q values of 1500 are achieved with a 13 dB
S/N ratio. A cooling time constant for a single antiproton of τ = 1/γ = m/RpD

2/q2

of 10 s is obtained in the CT. The cooling time constant is more than a factor of
six smaller than in our experiment at Mainz and will thus significantly accelerate
preparation of particles with single spin-flip resolution.

3.9 Electrode voltage biasing

Another essential component of the experiment are the highly-stable voltage sources
and filter stages required for the DC biasing of the trap electrodes. They define
the stability of the axial frequency via the noise amplitudes on the trap electrodes.
We use commercial power supplies which were specifically developed to match the
requirements of BASE (Stahl Electronics – UM1-14/bipolar). Each power supply has
ten bipolar channels for biasing of the transport electrodes with 16-bit resolution, and
six bipolar high-precision channels with 25-bit resolution. These channels are used to
supply ring and correction electrodes, and have a voltage reproducibility of <10−6.
For dip-averaging times of 30 s, the fractional voltage stability is 10−7, which causes
an additional frequency fluctuation of 30mHz. This causes much smaller fluctuations
than the axial frequency shift induced by a spin-transition.
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Fig. 27. Simplified connection diagram of the BASE precision trap. During frequency mea-
surements, adjacent transport and endcap electrodes are set to ground and act as a “common
endcap electrode”. For details see text.

To significantly suppress noise on the electrodes induced by rf pickup and electro-
magnetic interference, we use four RC filter stages, one at 300K, one at 77K and two
at 4K. The effective corner frequency of the filter assembly is at 15Hz with an at-
tenuation of 40 dB per decade. The time constant RC of the filters is still sufficiently
low to apply voltage ramps for adiabatic particle shuttling within a few 100ms.
To filter the fast high-voltage lines connected to the two high-voltage electrodes,

diode-bridged RC-filters are utilized. When a fast pulse is applied, the diodes open
and transmit the pulse signal, in DC-mode the diodes are closed and the RC filter
itself is active.
A connection diagram of our precision trap is shown in Fig. 27. All electrodes are

DC-biased by the filter stages described above. Coaxial lines for particle excitation
are connected to the endcap electrodes by capacitive attenuators. High impedance rf-
blocks protect the excitation signal from shorts to ground. The detectors are attached
to the correction electrodes, the cyclotron detector to the radially-segmented upper,
the axial to the lower one, respectively. The electronics layout of all the other traps
is similar to the one shown in the Fig. 27.

4 Preparation of single antiprotons

The BASE trap system has been commissioned in the 2014 antiproton run. Tech-
niques to prepare cold single antiprotons [72,79,80] from the 5.3MeV AD pulses
have been established. This includes catching, electron and resistive cooling, cleaning
procedures, and single-particle preparation. Details are described in this chapter.

4.1 Antiproton injection

To inject antiprotons into the trap, the beam is steered to the center axis of the ap-
paratus. The first quadrupole magnet upstream of the apparatus is used to tune the
focal point to the degrader. To correct for displacements of the beam with respect
to the trap axis, the corrector magnets and the signal strengths on the channels of
the four-fold segmented cryogenic beam monitor are utilized. A typical signal from
one of the beam-monitor channels is shown in Fig. 28(a). The peak is due to charge
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Fig. 28. (a) Annihilation signal of antiprotons on the beam monitor showing a charge
deposition of about Q = 106e. (b) After storing about 3000 antiprotons for several seconds
in the reservoir trap, the antiprotons are extracted by a second high-voltage pulse and
annihilate on the degrader.
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Fig. 29. Detailed sketch of the catching trap and the electron gun. For details see text.

deposition of about 106 antiprotons. A 9mm hole in the center of the beam-monitor
allows the antiproton pulse to pass. To confine the incoming antiprotons, the high-
voltage (HV) electrodes are used. The static HV electrode is constantly biased with
−1 kV. After antiproton injection an adequately timed voltage pulse on the pulsed
HV electrode to −1 kV closes the catching trap. The injection timing is obtained
precisely from a scintillation detector placed close to the apparatus. To test whether
catching was successful, the antiprotons are extracted to the degrader foil. The an-
nihilation signal is observed by triggering the scintillator on the extraction pulse as
shown in Fig. 28(b). To estimate the number of trapped antiprotons we calibrate the
scintillation detector by the annihilation signal of an AD pulse with known particle
number. Thereby, we estimate the number of confined antiprotons per AD-shot to
be about 3000. Comparing this number to the expected efficiency from the degrader
simulations indicates that the actual thickness of the degrader is within the desired
range close to the optimum value (see Sect. 3.6).

4.2 Electron cooling

The trapped antiprotons have kinetic energies up to 1 keV and need to be cooled fur-
ther. To this end, sympathetic cooling by interaction with cold electrons [72] is used.
In the strong magnetic field of the Penning trap, electrons are cooled via synchrotron
radiation in the cyclotron mode. This process typically takes a few 100ms and cryo-
genic particle temperatures are reached. We load electrons into our trap by utilizing
our field emission electron gun (see Fig. 29). A 100 nA electron current is turned on
for a few seconds, then the upstream and the downstream high-voltage electrodes
are subsequently ramped to −1 kV. After a 3 s waiting time, the electrons thermalize
and relax to the center of the trap which is at 14V. After this procedure, typically
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Fig. 30. FFT spectra taken during the antiproton preparation procedure. (a) After an-
tiproton injection, the electrons shield the low frequency signals of the antiproton motion
and only the noise resonance of the detection system is observed. (b) FFT-spectrum ob-
served after applying the electron axial drive, electron kickout and sideband cooling of the
magnetron mode. The ring voltage was detuned by 11.5mV from the antiproton resonance
voltage to observe the H− and antiproton peak signals 450Hz and 800Hz above the res-
onator frequency, respectively. (c) The FFT-spectrum before the cleaning dipolar drive at
the H− modified cyclotron frequency with 18.5mV detuned ring voltage exhibits two broad
peaks around the axial frequencies of both particle species. (d) After applying the cleaning
drive the H− modified cyclotron frequency, only an antiproton signal is observed which is
shifted to a higher frequency and reduced in width. For details see text.

10 000 electrons cooled to the environment temperature are prepared. In order to sup-
press the noise generated by our high-voltage switches, and thus, to avoid spurious
heating of the trapped electrons, the high-voltage signals are guided to the trap by
fast diode-bridged RC-filters.
After injection of antiprotons into the cold electron cloud and a thermalization

time of 10 s typically several hundred antiprotons per AD pulse accumulate in the
harmonic well of the RT. Inside the RT, the antiprotons are further cooled resistively
by the detection system at 5.9K. The number of prepared cold particles is about one
order of magnitude less than the initial number of trapped particles.

4.3 Cleaning procedures

After injection, the cloud of trapped particles is composed of electrons, antiprotons
and contaminant negative ions. To eventually prepare a single particle, all conta-
minant particles are removed first. Some FFT spectra taken during the preparation
procedure are shown in Fig. 30. The repertoire of cleaning procedures in the sequential
order in which they are applied after antiproton injection is listed in the following:
Electron axial drive: A strong rf-drive applied to electrode R1 at the axial

frequency of the electrons (28.7MHz) removes a large fraction of these particles.
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Fig. 31. (a) FFT spectrum of 42±1 antiprotons in the RT. (b) The dip width scales linearly
with the number of particles, which can be used to count the number of particles present in
the trap. For details see text.

Subsequently, the magnetron motion of the antiprotons is cooled by a sideband drive
at νz + ν−, which centers them in the trap.
Electron kickout : Electrons on large magnetron orbits are not removed by the axial

drive and remain in the trap. These particles are efficiently cleaned by opening the
trap with a fast voltage pulse in the range of 250 ns to 500 ns duration. Due to their
faster acceleration, electrons escape while the 1836-fold heavier antiprotons remain
in the trap. To this end, the cloud of trapped particles is adiabatically transported
to electrode T2 next to the upstream high-voltage electrode. After the transport, the
trap is elevated and the electron ejection pulse is applied to the pulsed electrode, as
shown in Fig. 29. Electrons escape towards the positively biased degrader. This scheme
can be repeated for several times without losing antiprotons during the kick-out
pulses. After applying magnetron sideband cooling, signals of the remaining particles
are observed. An FFT spectrum recorded after the electron kick-out is shown in
Fig. 30(b).
Negative ion cleaning : To remove contaminant negative ions, such as C− or O−, a

broad-band white noise excitation signal in a frequency band from 20 kHz to 500 kHz
is injected to the trap. This covers the axial frequency span of the typically present
contaminant ion’s axial modes except H−. The signal is applied for 30 s and the
trapping potential is lowered subsequently. Thus, the excited ions are released from
the trap.
H− cleaning : After these procedures and subsequent centering of the remain-

ing particles the signals shown in Fig. 30(c) are detected. At an axial frequency of
646 kHz, the frequency difference between the two species is only 350Hz. To remove
the remaining H− ions, a resonant dipolar drive at their modified cyclotron frequency
ν+,H− is applied and the trap potential is lowered again to release the heated par-
ticles. The subsequently recorded FFT spectrum shown in Fig. 30(d) demonstrates
that H− ions are efficiently removed.
Particle reduction: After removing all contaminant particles, the dip signal of the

remaining antiprotons can be observed by tuning their axial frequency to the center
frequency of the detector, see Fig. 31(a). To count the number of particles, the dip
width is measured, which is proportional to the number of trapped antiprotons N , see
Eq. (10). To reduce the number of antiprotons to one, the trapping potential is low-
ered to voltages below 0.5V to let the hottest antiprotons escape from the trap. The
trapping potential is lowered further in each step until eventually a single antipro-
ton remains as shown in Fig. 31(b). After obtaining eventually a single antiproton,
frequency measurements with single particles can be carried out. Note that the par-
ticle reduction scheme described above is an established method to prepare single
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Fig. 32. (a) A single particle in the RT on resonance of the axial detection system at
645.2 kHz with 1.8Hz dip width is shown after the preparation and cleaning procedures.
The FFT spectrum was averaged for 42 s. (b) A particle transported from the RT to the PT
is detected with the precision trap detection system at 683.8 kHz with a dip width of 1.0Hz.
A FFT spectrum with 100 s averaging time is shown.

particles in similar precision experiments [32,33,37,51–53]. However, it is not suited
for our concept of the reservoir trap, as only one particle from the cloud can be
extracted. To overcome this, we have recently also developed a non-destructive single-
particle extraction scheme to make a more efficient use of the antiproton cloud. The
details can be found in reference [17].
Particle transport : Having prepared a single antiproton in the RT, we transport

it along the trap axis to any other trap by a sequence of slow voltage ramps on the
electrodes in between the ring electrodes of the two traps. At the beginning of each
voltage ramp, two adjacent electrodes are at 13.5V and confine the antiproton in axial
direction while the other electrodes are on ground potential. Then, the potential of
the next electrode in transport direction is ramped to 13.5V while the the electrode
of the potential well in the opposing direction is ramped to ground. Using volatage
ramps of 1.5 s duration, the center of the axially-confining potential well can be moved
along the trap axis without significant heating of the particle during the transport.
Thus, particles can be transported by adiabatic shuttling into the other traps as
well, where they can be detected using the detection system of the respective trap.
Figure 32(a) and Fig. 32(b) show the comparison of a particle detected with the
axial detection system in the reservoir trap at 645.2 kHz and in the precision trap at
683.8 kHz, respectively.

5 Frequency measurements with single antiprotons

5.1 Trap optimization

The dip detection as discussed in Sect. 2.1.2 is used in most measurements of the
antiproton’s axial frequency νz. When tuned to resonance with the detection system,
the particle’s axial energy Ez performs a random walk within the one-dimensional
Boltzmann energy distribution with the temperature Tz of the axial detector as a
parameter. The single-particle line-shape is thus a convolution of the particle’s un-
perturbed resonance line and the thermal Boltzmann distribution. In presence of an
octupolar trap anharmonicity C4 the axial frequency becomes

νz(Ez) = νz,0

(
1 +
3

4

C4

C22

Ez

qVR

)
· (27)
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Fig. 33. (a) Axial frequency dips measured for different tuning ratios. (b) Dip signal-to-noise
ratio for different tuning ratios.

Thus, the axial frequency νz changes with the continuous change of axial energy
as well, the thermalization time-scales are given by the axial cooling time con-
stant τz ≈ 50ms. This is about a factor of 1000 smaller than the averaging time
typically used for dip detection. Thus, in presence of the C4 anharmonicity the
signal-to-noise ratio of the single particle is reduced, which is shown in Fig. 33.
The C4 coefficient can be tuned by recording dip spectra for different tuning ra-
tios TR = VCE/VR, where VCE is the voltage applied to the correction electrodes of
the trap. Thus, by reducing the C4 coefficient the signal-to-noise ratio of the single
particle dip is increased. This allows for an optimization of the tuning ratio to a
level of 10−4. In g-factor measurements performed in the BASE trap the correspond-
ing residual C4 would contribute systematic magnetic moment shifts on the level of
0.1 ppb.
However, the trapping potential can be optimized even further by measuring axial

frequency shifts as a function of radial energy and for different tuning ratios. For this
purpose, the magnetron motion is excited with a resonant burst drive of Nc cycles in
between two axial frequency measurements. Results of such measurements are shown
in Fig. 34(a). By fitting the data with polynomials in Nc, the coefficients C4 and C6
can be extracted for each experimentally applied TR. The extracted coefficients as a
function of the tuning ratio are shown in Fig. 34(b). In an ideal compensated trap,
both anharmonicity coefficients are set to zero C4(TRopt) = C6(TRopt) = 0 at the
same ideal tuning ratio TRopt. For the data shown in Fig. 34(b), the zero points of
C4(TR) and C6(TR) are separated by ΔTR = 0.0001 (1 · 10−4). The deviation is due
to the machining precision of the trap electrodes.
To obtain the least systematic shifts in the experiment without exact compensa-

tion, we set the tuning ratio to the zero-point of C4(TR), which can be determined
2 ppm precision. In this case, the uncertainty in C4 will contribute a systematic
g-factor uncertainty at the level of a few ppt only and the residual hexa-decapolar
contribution leads only to systematic shifts on the sub-ppt level if the measurement is
carried out at low amplitudes in thermal equilibrium with the detector. If necessary,
exact local compensation can be achieved by deliberately superimposing constant
electric fields to the trap to further decrease the systematic shifts.
By comparing potential calculations with the measured results, an absolute

energy calibration of the magnetron mode can be performed. Using sideband
π-pulses to convert E− into E+ and Ez, the energy calibration can be extended
to the modified cyclotron and axial mode. Thereby, the magnitude of the energy
dependent systematic shifts of the measured frequency ratios in all eigenmodes can be
determined.
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5.2 Axial frequency measurements

Precise measurements of the axial frequency νz are required to determine the spin-
state of the particle (see Sect. 2.2) and to measure the cyclotron frequency νc by
the sideband coupling method (see Sect. 2.1). The measurement precision of νz is
determined by two components, the statistical measurement uncertainty σz which
is equivalent to a white-noise component and a random-walk noise component. The
latter is due to drifts of the trapping voltage or through fluctuations in the radial
energy E± of the particle that are coupled due to the presence of a magnetic bottle
B2 to the axial mode. The dependence of σz on the measurement parameters was
investigated through numerical simulations. It is given as:

σz = αFFT

√
1

2π

Δνz

T
√
SNR

, (28)

where αFFT is a parameter depending on the FFT overlap and windowing functions,
Δνz the width of the particle dip, T the averaging time and SNR the signal-to-noise
ratio of the dip. The white noise component decreases with increasing averaging
time as T−1/2, whereas the contribution of random-walk noise increases proportional
to T .
To choose the optimum averaging time T for measurements of νz in the reservoir

trap, transient signals of the single particle dip were recorded to determine the Allan
deviation as a function of T . The absolute values of νz are shown in Fig. 35(a).
Within a total measurement time of 4 h the absolute frequency is stable to ±250mHz.
Figure 35(b) shows the Allan deviation of the data. For small averaging times, the
white-noise component dominates the Allan deviation with the T−1/2 scaling. After
T > 150 s the random-walk component leads to an increase of the Allan deviation.
The highest achievable precision for a single νz measurement in the RT is 35mHz
using 150 s averaging time.
In the RT, a small axial frequency fluctuation compared to the frequency jump

of 230mHz caused by a spin flip can be achieved. Even though, the actual axial
frequency fluctuation in the AT which determines the spin-flip detection fidelity has
to be determined from a similar measurement in the magnetic bottle, as the B2
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a

Fig. 35. (a) Evolution of the axial frequency of a single antiproton in the reservoir trap
during a measurement series of 4 hours. (b) Allan deviation of the data.

coefficient in the AT is more than a factor of 105 larger. Spurious noise on the trap
electrodes heating the modified cyclotron mode defines the magnitude of the random-
walk noise component in the AT (see Sect. 2.2.2). We conclude from the measurement
in the RT that the stability of the power supplies is sufficiently good to observe single
spin transitions, but the heating rate of the cyclotron mode in the AT remains to be
determined.

5.3 Sideband frequency measurements

The sideband coupling method described in Sect. 2.1 is used to determine the modi-
fied cyclotron or magnetron frequency. In principle, measuring both radial frequencies
is necessary to derive the free cyclotron frequency νc via the invariance theorem [48].
However, as the uncertainty in the magnetron frequency measurement is suppressed
by a factor ν−/νc, it is sufficient to approximate the magnetron frequency using
ν− ≈ ν2z/2ν+ to determine νc. The error by this approximation is a few 10 ppt for
absolute frequency measurements and less than 0.1 ppt for frequency ratios. Thus, we
determine νc in alternating measurements of νz and ν+, the resulting Fourier spectra
are shown in Fig. 36(a). The axial frequency is directly measured, whereas ν+ is de-
termined from the sideband frequencies using a near-resonant coupling drive at νrf =
29 011 363.7Hz and the relation ν+ = νrf + νl+ νr − νz, see Eq. (15). From the FFT-
spectra shown in Fig. 36(a), we obtain the axial frequency as νz = 645 251.849(14)Hz
and the sideband frequencies as νl = 645 246.199(13) Hz and νr = 645 258.198(10)Hz,
resulting in ν+ = 29 656 616.248(22)Hz and ν− = 7019.512 1(8)Hz. By using the in-
variance theorem the measurement in Fig. 36(a) results in νc = 29 663 635.760(22)Hz,
which has a statistical uncertainty of 0.7 ppb. Note that νc can be determined for an
arbitrary detuning δ of the coupling drive but one has to consider that the sideband
frequencies change according to Eq. (14), which is shown in the “classical avoided
crossing” in Fig. 36(b).
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Fig. 36. (a) Sideband frequencies from the coupled modified cyclotron and axial motion
of a single antiproton in the reservoir trap. The signal of the uncoupled axial motion is
shown in black, the signal observed while irradiating a near resonant drive δ ≈ 0 is shown
in green while the sideband signals in this FFT-spectrum of νl and νr are marked in red
and blue, respectively. (b) The sideband frequencies as function of the detuning δ. The
upper sideband is shown in blue, the lower sideband in red, and axial frequency in black.
Measurement uncertainties are on the order of 10mHz and are omitted here.

5.4 Magnetic field stability

The magnetic field B defines νc and νL, thus a careful characterization of the temporal
stability of B is of great importance. To analyze the stability of the magnet the
cyclotron frequency of a single trapped antiproton is continuously measured and the
Allan deviation is computed. We fit an empirical model to the measured data which
consists of

– a linear drift,
– an oscillatory term,
– a random walk,
– and a white noise contribution.

Results of different series of cyclotron frequency measurements with a duration of
120 s each are shown in Fig. 37. The red circles represent the measured data points,
the blue lines are the individual modelled contributions. In the measurement shown
in Fig. 37(a), our cyclotron frequency measurements are not synchronized to the AD
deceleration-cycle. This gives raise to an oscillation term with a 21min period due to
the beating between our measurement sequence and the magnetic field ramps of the
AD deceleration cycle. The beat amplitude of 590mHz corresponds to a magnetic field
amplitude of 20 nT, which is consistent with the field amplitude observed outside the
magnet using GMR sensors and the magnet’s shielding factor of 10, see Fig. 38. The
measurement shown in Fig. 37(b) is triggered to the PS-to-AD antiproton injection
trigger, and the duration of one cyclotron frequency determination has been matched
to exactly one AD deceleration cycle. Here, the oscillatory contribution vanishes,
however a random-walk contribution with standard deviation σR = 220(20)mHz as
well as a Gaussian white-noise component of σw = 160(15)mHz contribute to the cy-
clotron frequency fluctuation. For comparison, the same measurement was performed
in a shut-down period of the AD, which is shown in Fig. 37(c). The random-walk
component was reduced to σR = 160(15)mHz, while the white-noise component
is not affected within error bars. In all three cases the linear drift component is
−5(2) ppb/h.
Results of a series of cyclotron frequency measurements carried out during AD

operation and activities of other experiments in the accelerator hall are shown in
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Fig. 37. Allan deviation of subsequent ν+ measurements of a single antiproton for different
measurement conditions. The contributions of the white noise, the oscillation term, and the
random walk noise contributions are shown as dash-doted, doted and dashed lines, respec-
tively. (a) The Allan deviation of a measurement not synchronized to the AD deceleration
cycle is shown. The beating between the AD and measurement cycle gave raise to an oscil-
lation term. (b) Results of a synchronized measurement series during AD operation series
where the oscillation term vanished. (c) Results of a measurement series in a AD shut-down
period. The random walk noise component is significantly lower compared to the measure-
ment in (b) due to less external magnetic field fluctuations. For more details see text.

Fig. 38(b). Here, magnetic field ramps due to charging and discharging of supercon-
ducting magnets and operation of the overhead crane change the cyclotron frequency
by several Hz. An array of giant magneto resistance, hall and flux gate magnetic field
sensors, which is installed in the experiment zone, is used to verify external magnetic
field drifts and jumps. Frequency measurements carried out during such periods are
disregarded in any frequency analysis.

5.5 Cyclotron frequency ratio measurements of two particles

Measurements of the cyclotron frequency ratios of two charged particles is a general
approach used in Penning trap mass spectrometry to compare the charge-to-mass
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Fig. 38. (a) GMR sensor measurements of the background magnetic field fluctuations during
the AD cycle. (b) Successive cyclotron frequency measurements of a single antiproton for
a 10 hour period showing frequency jumps and drifts due to external perturbations. The
average fluctuation of the cyclotron frequency Ξc for the different periods are given.

ratios of two particles [46]. A variety of excellent cyclotron frequency measurement
techniques and schemes for precise mass determination exists [12,81,82,84–87].

In BASE we implemented a non-destructive measurement scheme allowing fast
comparisons of cyclotron frequency ratios with the aim to compare the proton and
antiproton charge-to-mass ratio. To this end, we first prepare one particle (particle
1) in the HV-pulsed electrode and the second one (particle 2) in the center of the
reservoir trap. Subsequently, νc,2 is measured by the sideband method as described in
Sect. 5.3, which requires typically 100 s. Afterwards, we shuttle the particle 1 to the
trap and simultaneously transport particle 2 to the HV-static electrode. This particle
exchange takes 15 s. In a next step the cyclotron frequency νc,1 of particle number
1 is measured. The total duration of the transport and frequency measurements is
matched to one AD cycle to avoid the beating effects discussed in Sect. 5.4. Thus, the
entire scheme to measure one single charge-to-mass ratio takes a total measurement
time of about 240 s. This corresponds, compared to earlier measurements comparing
the antiproton and proton charge-to-mass ratio [12], to a 50-fold improved sampling
rate.

This scheme was first realized using two antiprotons in order to characterize the
measurement performance of charge-to-mass ratio measurements in our apparatus.
Afterwards, we applied it using an antiproton and an H− ion making the so far
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Fig. 39. Cyclotron frequency ratio of two particles obtained with the adiabatic shuttling
method. For details see text. In total, 433 data points are shown. Data points that were
disregarded due to external magnetic field changes are omitted in the plot. The histogram
shows a Gaussian distribution with 5.4 ppb standard deviation. The mean frequency ratio
obtained is νc,1/νc,2 − 1 = 55(253) ppt.

most precise comparison of the antiproton and proton charge-to-mass ratios with a
relative uncertainty of only 69 ppt [13]. One result of a measurement sequence of
cyclotron frequency ratios with the adiabatic particle exchange method is shown in
Fig. 39. The scatter of the measured cyclotron frequency ratios has a width of 5.4 ppb
caused by white noise and the random-walk noise in the magnetic field. With this
magnetic field stability, the average cyclotron frequency ratio of the two particles
has been determined in a measurement time of 41 hours to 270 ppt. Data that was
collected during external magnetic field ramps and crane operation periods has been
excluded from the evaluation. The entire sequence was recorded using only two single
particles.
From the above measurement we can conclude on the impact of the magnetic field

fluctuations on a g-factor measurement. In this measurement sequence, the measure-
ment of νc,2 is replaced by a measurement of νL, i.e. the irradiation of the spin-flip
drive [36], and therefore the magnetic field fluctuations cause a broadening of the
g-factor resonance. Compared to the line-width contribution expected from the resid-
ual B2 inhomogeneity in the precision trap, the contribution from magnetic field
fluctuations is dominating, however a factor of 2.5 lower than the total line width
in our proton g-factor measurement [36]. Thus, this demonstrates that the magnetic
field stability of the BASE apparatus is sufficient to perform an antiproton magnetic
moment measurement with a fractional precision on the ppb level.

6 Measurement perspectives

6.1 Proton and antiproton magnetic moments

The highest priority of BASE is the high-precision measurement of the antiproton
magnetic moment μp. The best value for the proton magnetic moment μp with 3.3 ppb
uncertainty, obtained with our proton-double trap system in Mainz, sets the first pre-
cision mark for the measurement of μp. Further improvements of this CPT invariance
test beyond this level require measurements of both values μp and μp with higher
precision.
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6.1.1 Measurement with the state-of-art double trap method

Improvements on the major uncertainty limitations of the proton-double trap sys-
tem [36] have been included in BASE. The increased distance between the precision
and analysis trap reduces the residual magnetic bottle in the PT by a factor of six to
B2 = 0.67T/m

2 and thus the line-width parameter in Eq. (23) to 150 ppt/K×Tz. Us-
ing axial feedback cooling to reduce the particle amplitude to an effective temperature
of 2.5K, a line width with a fraction of σB2 = 390 ppt of the Larmor frequency can be
reached. This contribution is not significant compared to the width caused by non-
linear magnetic field fluctuations of σB = 5.4 ppb discussed in Sect. 5.4. Compared
to the 12.5 ppb line-width of the g-factor resonance in [36], the line-width is about a
factor of 2.5 narrower, so that a measurement of μp with the established techniques
can reach a sub-ppb precision, as the center of the g-factor resonance can be deter-
mined to a fraction on the 1% level of the line width depending on the measurement
statistics.
To further increase the precision, σB needs to be reduced. One way to address this

issue is to improve the magnetic field stability by the installation of a self-shielding
coil around the Penning-trap chamber and a flux-gate locked pair of Helmholtz
coils for further external drift compensation [64,65]. By stabilizing the pressure of
the evaporating liquid helium in the magnet, linear drifts of the magnetic field of
(1/B)(ΔB/Δt) = 10 ppt/h [86] and σB ≈ 300 ppt have been achieved in stabilized
superconducting magnets [64], which is about 500 and 15 times better, respectively,
than the magnet currently used.

6.1.2 Phase-sensitive detection methods

It is planned to implement fast phase-sensitive detection methods, which offer several
benefits for the magnetic moment measurements [82–84]. In the analysis trap, phase
detection will be applied to detect the frequency shift νz,sf ≈ 230mHz caused by a
spin transition.
The basic principle is illustrated in Fig. 40. The axial motion of an antiproton with

frequency νz is excited with the reference signal. Afterwards, the particle is decoupled
from the drive and the axial detection system for a certain phase evolution time tevol.
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Subsequently, the antiproton is recoupled to the detection system and the relative
phase Δφ between the particle signal and the reference signal is measured

Δφ1(
◦) = 360◦(νdrive − νz) · tevol . (29)

Once the axial frequency changes by Δνz a relative phase

Δφ2(
◦) = 360◦(νdrive − (νz +Δνz)) · tevol (30)

will be measured. Finally, the difference of the relative phases of both measurements
will be evaluated

Δφ(◦) = Δφ1(◦)−Δφ2(◦) = 360◦Δνz · tevol . (31)

The comparison of two subsequent phase measurements with respect to the reference
oscillator thus enables the resolution of tiny axial frequency differences. By using a
phase evolution time of 1 s, the phase difference would amount to Δφ = 360◦·Δνz/Hz.
This would enable to resolve the expected axial frequency change of Δνz,SF ≈ 230mHz
caused by an antiproton spin transition with a phase difference of Δφ ≈ 83 ◦ in the
BASE analysis trap.
The proof of principle of this measurement scheme has been carried out in the pre-

cision trap of the proton experiment at Mainz. Here, the phase measurement method
was used to detect a 200mHz shift of the reference oscillator and the axial frequency
of a proton. In Fig. 41(a) the phases measured in a sequence of 28 measurements at
a free evolution time of tevol = 1 s are shown. In the histogram in Fig. 41(b) the data
is separated into two sets, one for each reference oscillator frequency. The probability
to measure the same frequency for the two different reference oscillator frequencies
is only about 3%, which would correspond to 97% spin-state detection fidelity. In
addition, the measurement time to resolve the spin state is only 1 second, and thus
30-fold improved compared to dip detection. This fast detection scheme also allows for
a much larger cyclotron-temperature acceptance in the analysis trap. Based on this
study, we estimate that single spin-flip resolution can be achieved up to T+ ≈ 5.4K
cyclotron temperature using such short averaging times. Thus, this technique has the
potential to accelerate axial frequency measurements and the preparation time for
spin flip experiments.
Further, faster phase-sensitive detection methods also exist for measuring ν+, such

as the measurement techniques “pulse-and-phase” (P’n’P) [82] or “pulse-and-amplify”
(P’n’A) [84], allowing faster measurements and thus reducing the influence of mag-
netic field fluctuations. As these measurement techniques make direct measurements
of ν+, they reduce the contribution of trapping potential fluctuations to the modified
cyclotron frequency fluctuation Ξ+ by a factor of νz/νc compared to the double-dip
method. It was demonstrated that the modified cyclotron frequency can be resolved to
150 ppt within 10 s [84], which enabled g-factor measurements of electrons in highly-
charged ions down to 40 ppt uncertainty [53]. Assuming that the magnetic field and
voltage fluctuations can be reduced to σB ≤ 300 ppt and σVR ≤ 40 ppt in shorter av-
eraging time, respectively, and σr,B2 = 390 ppt, a g-factor line-width of about 500 ppt
can be obtained, which enables measurements of μp and μp with better than 100 ppt
uncertainty.

6.1.3 Increased sampling rate and sidereal variation of the magnetic moments

Another desired improvement for g-factor measurements is to increase the data col-
lection rate, which was limited by the time required to cool the modified cyclotron
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Fig. 41. Experimental demonstration of the resolution of a frequency jump of 200mHz in
one second by phase-sensitive detection in the precision trap of the proton experiment in
Mainz. (a) Measured relative phase as a function of the measuring sequence for a free phase
evolution time of tevol = 1 s. Two phase levels are observed, corresponding to the 200mHz
frequency shift of the reference oscillator. (b) The two data sets with different reference
oscillator frequency are shown in a histogram. The overlap of the histograms is only ≈ 3%.
Thus, only in 3 out of hundred measuring sequences it cannot be decided whether the spin
has flipped or not.

motion to a sub-thermal energy below 150μeV (1.7K) for the spin state read-out [34].
The implementation of the cooling trap in BASE targets this limitation and removes
the most significant time contributions of the cooling procedure due to a lower cool-
ing time constant and by eliminating the transport time between PT and AT for
the temperature measurement. Compared to our proton trap system in Mainz, we
expect that this improves the data acquisition rate by an order of magnitude, so that
a g-factor resonance with similar statistics to our measurement in Ref. [36] can be
recorded in the BASE setup within 2 weeks.
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A fast sampling of the proton/antiproton magnetic moments would open the
possiblity to directly test the Standard Model Extension (SME) [42] developed by
Kostelecky et al., which introduces Lorentz- and CPT-violating terms into the Dirac
equation while maintaining the essential features of local quantum field theories [20].
The implications of the SME on the Larmor and cyclotron frequencies is discussed
in detail in the references [42,88]. In summary, the cyclotron frequency νc and the
anomaly frequency νa = νL − νc for protons and antiprotons are modified in the
leading order of the SME as follows:

νpc = ν
p
c ≈ (1− cp00 − cp11 − cp22)νc, (32)

νp/pa ≈ 2πνa ± 2bp3 − 2dp30mp − 2Hp12, (33)

where b, c, d andH denote the Lorentz-violating axial-vector, tensor, axial-tensor, and
pseudoscalar fields of the SME, respectively, and the 3-axis points in the direction
of the magnetic field. The parameters c, d, and H are CPT-conserving, but the
axial vector b is a CPT-violating parameter. Thus, the cyclotron frequencies of both
particles are shifted in the same way, but the difference in the Larmor frequencies of
proton and antiproton becomes:

ΔνL = (ν
p
L − νpL) = 4bp3/(2π). (34)

Thus, a non-vanishing parameter bp would lead to a difference of the measured fre-
quency ratios νL/νc for protons and antiprotons, whereas the cyclotron frequency
ratio νpc /ν

p
c is insensitive to leading-order effects. Thus, by improving the measure-

ment precision of μp and μp the parameter b
p can be constrained in our experiment in

a direct particle/antiparticle comparison. If any difference between μp and μp would
be observed, the SME predicts that ΔνL would exhibit diurnal variations as the mag-
net axis moves relative to bp, since it is only sensitive to the component of bp parallel
to the magnetic field. In that case, the diurnal variations would indicate that the
b-field from the SME framework could describe the CPT violating mechanism.

6.1.4 Sympathetic cooling of protons/antiprotons with laser-cooled ions

Further improvements in measurement precision and sampling rate would be provided
by lower motional amplitudes and a deterministic cooling scheme, respectively. This
can be achieved using laser-cooled ions for sympathetic cooling. Doppler laser-cooling
of the motional states of single 40Ca+ ions in a Penning trap to less than 10 mK
temperatures has been demonstrated [89], and cooling to the ground state by optical
sideband spectroscopy in a Penning trap has also been recently achieved [57]. Thus, we
consider to implement a sympathetic laser cooling scheme based on readily available
laser-cooled ions. For our purpose, 9Be+ ions are most suited, since these are the
lightest ions relative to the proton/antiproton with good optical access [90].
The cooling scheme will rely on a set of techniques proposed by Heinzen and

Wineland [91] which would allow the coupling of the laser-cooled ion to a charged
“spectroscopy particle”, such as protons or antiprotons. This coupling provides cool-
ing, state manipulation and readout of the spectroscopy particle via the laser-cooled
ion. Adapting this scheme to single aluminum ions as spectroscopy particles has
yielded atomic clocks of the highest accuracy [92,93]. Because many of the steps were
inspired by quantum logic experiments with single ions as qubits, this spectroscopy
approach is now known as quantum logic spectroscopy [94].
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In terms of the remote coupling between the proton/antiproton and the laser-
cooled ion, it was suggested to hold the spectroscopy particle and the ion in two
spatially separate potential wells with equal axial oscillation frequency, coupled to
each other via image currents induced by the motion of the particles in a shared
electrode [91]. This approach is currently pursued for Paul traps [95] and for Penning
traps in the context of mass measurements [96].
The general idea was later adapted to a coupling of the proton/antiproton with

an atomic ion via the Coulomb force between the two particles held in two spatially
separated, but near-by potential wells without the use of a shared electrode [97]. This
direct, double-well approach has been demonstrated using pairs of atomic ions in
microfabricated radio-frequency Paul traps in the context of quantum logic experi-
ments [98,99]. For the double-well coupling, the coupling strength between the two
particles of charges qi, masses mi and trap frequencies ωi is given by [98]

Ωex =
qaqb

4πε0s30
√
mamb

√
ωaωb

, (35)

where s0 is the interparticle distance. As the coupling strength scales as s
−3
0 , the dis-

tance between the ions needs to be small in order to produce high coupling rates. One
of the important possible sources of disturbances, anomalous motional heating [100],
seems to scale as d−4 [101], where d is the distance from the ion to the nearest
electrode, although a recent study [57] has suggested a d−3 scaling in macroscopic
3D traps. Depending on absolute heating rates achieved experimentally and on the
assumed scaling, this may set a lower technical limit on the desirable trap size.
For demonstration and application to the proton, an electrostatic double-well po-

tential in the axial direction is needed. For a negatively charged particle such as
the antiproton, the electrostatic potential would be easier to engineer, as it would
consist of a parabolic well for the atomic ion and an inverted parabola for the par-
ticle that is to be cooled sympathetically. When designing a potential, it must be
kept in mind that the wells need different curvatures to account for the mass ratio
between the particles. To minimize asymmetries, the mass ratio between the parti-
cles should be as close to unity as possible, making 9Be+ the best candidate for our
purpose, since it is the lightest ion with cooling transitions accessible by available
lasers.
A possible design for such a double-well potential is a Penning trap consisting

of multiple ring-shaped electrodes of a thickness half as large as their inner radii,
separated by spacers as shown in Fig. 42(a). Assuming a trap diameter of 3.6mm, a
well distance of 1.35mm is achievable at an axial trap frequency of about 890 kHz,
yielding Ωex = 2π · 3.3 s−1. The bump between the potential wells is only 3meV,
which, while still a small value, is an order of magnitude above the thermal energy of
a resistively cooled particle in a 4.2K environment and as large as the value achieved
in [98].
For higher coupling rates, we examine microfabricated Penning traps where all

trap dimensions are decreased linearly, while the voltages are the same to maintain
the well depth. In that case, the potential curvature is proportional to d−2, and the
trap frequencies scale as d−1. As a result, reviewing the Eq. (35) for the coupling
strength, Ωex scales with d

−2. Simulations of a trap stack as in Fig. 42(a) with inner
radius d = 400μm and electrodes of 200μm width, separated by 50μm spacers each,
yield a potential which exhibits two minima with a curvature ratio of 9:1 separated
by 300μm, see Fig. 42(b). At an axial frequency of 4MHz, we obtain a coupling rate
of Ωex = 2π · 68 s−1 and a time of τex of 3.7ms for an energy swap between the
particles. A trap stack of this design is currently under fabrication at the University
of Hannover.
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Fig. 42. (a) Cross section of the cylindrical geometry used for simulations. It consists of
nine thin stacked electrodes and grounded longer endcaps. Spacers are omitted for clarity
but are well receded for a high aspect ratio. The values used for d in the text are 1.8mm
and 400μm. The filled circle indicates the trap center for the proton, the hollow circle the
atomic ion’s location. (b) Double-well potential for a mass ratio of 9:1 in a trap of 800μm
diameter. For more details see text.

The integration of laser beams for cooling of the axial motion of the trapped ion
is challenging in two regards. First, in BASE the laser beams can only be brought
in along the axis of the magnet, in the space left available between the antipro-
ton beam and the cryogenic shields. Second, the double-well trap does not provide
easy optical access. Adequate geometries to address these challenges are under con-
sideration. While sympathetic Doppler cooling will be one the immediate goals of
this sympathetic laser cooling effort, the planned application of quantum logic spec-
troscopy [91,97] goes much further and also exploits the ion as a detector for both
the spectroscopy particle’s motional and Larmor frequencies. Beyond sympathetic
cooling, this may enable further increases of the sampling rate and additional control
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over systematic effects. It would also make all quantized degrees of freedom of individ-
ual trapped protons/antiprotons amenable to high-fidelity deterministic preparation,
control and measurement at the single quantum level.

6.2 The magnetic moment of 3He

Highly-precise measurements of magnetic fields are desired in various fields of exper-
imental physics. A conventional method for this purpose is using nuclear magnetic
resonance (NMR) sensors, where commonly used probes are based on the magnetic
moment of protons in water μ′p. 3He can provide an alternative to perform measure-
ments of strong magnetic fields in high-precision magnetometers, which have smaller
systematic uncertainties concerning sample shape corrections, impurities and environ-
ment dependence. Making use of optical pumping and long relaxation times in low
pressure 3He gas cells, relative magnetic field measurements up to 10−12 precision
within 6.6 s have been demonstrated [102].
The magnetic moment of atomic 3He can be expressed in units of the Bohr

magneton using the ratios μ′h/μ
′
p [103] and μ

′
p/μB [104] with a total uncertainty of

12 ppb [105]. To provide an independent calibration for magnetic field measurements,
the 3He magnetic moment μ′h has to be determined with a better precision. The
magnetic moment of the bare 3He nucleus μh can in principle be determined in the
BASE apparatus. The shielding factor σh, which is required to obtain μ

′
h = μh(1−σh)

contributes to μ′honly at a level of 0.1 ppb uncertainty [105].
3He based magnetic field measurements are planned in muon storage ring experi-

ments, where the muon anomalous magnetic moment aμ = (gμ−2)/2 is derived from
the anomaly frequency νa = aμq/mμB. Here, the magnetic field B has been calibrated
by measuring the magnetic field experienced by the muon beam using the NMR sig-
nal of protons in water [6]. Using 3He-based sensors, the magnetic field calibration of
future experiments may be improved [106].
To achieve a high-precision measurement of μh, an internal source [107] or external

source [87] for 3He would be required, so that 3He2+ can be produced inside the
Penning-trap system by electron impact ionization. The spin-state detection of the
3He nucleus is more challenging compared to the antiproton, since the frequency
shift due to a spin-transition is reduced by the ratio (μHe/μp)/(mHe/mp) ≈ 1/4
and becomes Δνz,SF = 59mHz only. However, this is about a factor 2 larger than
the frequency fluctuation due to voltage instabilities of the ring voltage, and the
frequency shifts due to cyclotron transitions are reduced to 18mHz as well. Thus,
the continuous Stern-Gerlach effect can be applied to measure νL/νc for

3He using
the double-trap technique to a precision on the ppb level as well.

6.3 Comparison of the proton and antiproton charge-to-mass ratios

As discussed in Sect. 5.5, adiabatic shuttling enables us to perform fast high-
precision measurements of the cyclotron frequency ratio of two particles. This tech-
nique can be applied using antiprotons and H− ions to compare the proton and
antiproton charge-to-mass ratios by converting the H− cyclotron frequency with the
ratio R

R =
(q/m)p
(q/m)H−

= 1.001089218750(2), (36)

to the one for the proton [12], accounting for the two additional electrons and their
binding energies. In addition, the polarization shift αB2 of the H− ion’s cyclotron



3104 The European Physical Journal Special Topics

frequency needs to be considered [15], which can be regarded as the H− ion having
a lower effective mass. Therefore, R needs to be corrected by 4 ppt in our magnetic
field of B = 1.945T [13].

Antiproton/H− cyclotron frequency ratios were first measured by the TRAP col-
laboration at LEAR [12], where the two particles were simultaneously stored in the
same trap. One particle was centered in the trap and its modified cyclotron frequency
was measured directly, whereas the other particle was stored on a large cyclotron
orbit to avoid a perturbation of the measurement. After each individual frequency
measurement the particles were exchanged by resistive cooling and resonant excita-
tion, respectively. In these experiments the particle interchange times were about 2 h.
Together with the high-precision cyclotron frequency measurements, which were car-
ried out by direct detection of the modified cyclotron mode, one charge-to-mass ratio
comparison took about 3 h. In total, a relative uncertainty of 90 ppt was achieved in
this measurement [12].

We have recently performed a new measurement of the antiproton and H− ion
cyclotron frequency ratio [13]. The two particles are stored in two separate poten-
tial wells and are alternately placed in the trap center using the adiabatic shuttling
method (see Sect. 5.5). The cyclotron frequency measurement takes place in thermal
equilibrium with the axial detection system by using the sideband coupling method
(see Sect. 2.1.3). In total, about 6500 cyclotron ratios have been measured in 35 days,
reaching a statistical uncertainty of 64 ppt. The largest systematic uncertainty in our
measurements originates from the so-called trap asymmetry, which causes a difference
in the position of the trap center for the two particles. To bring the antiproton and
the H− ion in resonance with the axial detection system, the ring voltage needs to
be adjusted by 5 mV. Due to machining tolerances, and patch and contact poten-
tials present on the trap electrodes, this shifts the equilibrium position by as little as
about 30 nm. In presence of the residual magnetic field gradient B1 = 7.58(42)mT in
our measurement trap, the difference in magnetic field experienced by these slightly
displaced particles needs to be corrected for. By careful systematic measurements,
we were able to determine the uncertainty of the shift to 26 ppt [108]. In total, we
obtained

(q/m)p
(q/m)p

− 1 = 1(69)10−12. (37)

Thus, according to our measurement CPT invariance holds up to this high level of
precision.

This result could be further improved using the phase-sensitive detection meth-
ods [82,84] and the magnetic field stabilization measures as discussed in Sect. 6.1.1.
The scatter of the cyclotron frequency ratio due to the non-linear fluctuations of B
can be as low as 300 ppt, which would tremendously reduce the data collection time
required for a high-precision comparison. To reduce the systematic uncertainty due
to the trap asymmetry, the magnetic field gradient B1 has to be reduced. To this
end, the ferromagnetic ring electrodes of the cooling trap and analysis trap can be
replaced by regular copper ring electrodes in a dedicated mass measurement run.
A second possibility is to compensate the magnetic field gradient locally in the mea-
surement trap by using the magnet’s shim coils or by adding additional shim coils
around the trap can. Thereby, B1 can be reduced by at least two orders of magnitude,
which reduces systematic corrections to about 1 ppt. Other systematic shifts such as
relativistic, image charge or image current shifts contribute less than 0.05 ppt due to
the large trap radius and the low kinetic energy. Thus, the cyclotron frequency ratio
can be measured in principle down to the limit given by the uncertainty of the fre-
quency ratio R of the H− to proton q/m ratio of 2 ppt. To further improve the CPT
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test beyond this value, a more precise measurement of the proton mass is required,
which is currently limiting the uncertainty of R.

6.4 High-precision mass measurements

The principle of comparing cyclotron frequencies of two particles using the adiabatic
transport can be also applied to determine absolute atomic masses. To this end,
(highly) charged carbon ions can be used as reference particles to calibrate the mea-
surement to the atomic mass standard. Corrections to the reference masses of carbon
ions due to the electron mass and binding energies contribute less than 0.1 ppt un-
certainty to a measurement. C6+ reference ions can be produced by charge breading
of carbon in the reservoir trap. In this way, the atomic masses of the proton, the
antiproton and other light ions can also be measured in the BASE apparatus.
The proton mass has been determined in several Penning trap experiments [109–

111] with 140 ppt as best single measurement uncertainty. Combining the mea-
surements, the CODATA group has evaluated the proton mass with 89 ppt uncer-
tainty [105]. Using cyclotron sideband measurements and adiabatic shuttling, an im-
provement by a factor of two in a measurement time of two months can be reached
with the current performance of the BASE apparatus. For the antiproton, cyclotron
frequency ratio measurements with proton and H− ion [12,14] have been carried
out. In addition, the antiproton-to-electron mass ratio has been determined from
spectroscopy of antiprotonic helium [112]. However, a cyclotron frequency ratio mea-
surement to carbon ions would constitute the first direct atomic mass measurement
of the antiproton. Obviously, high-precision mass measurements in the BASE trap
system would also benefit from the implementation of the phase-sensitive detection
and magnetic field stabilization.

7 Conclusion and outlook

The BASE apparatus, which is dedicated to measure the antiproton magnetic mo-
ment with highest precision, has been commissioned at the Antiproton Decelerator
at CERN. In the first online run, the essential techniques to catch and cool antipro-
tons to cryogenic temperatures have been demonstrated, as well as the preparation
of single antiprotons for the magnetic moment measurement cycle. In addition, the
fast adiabatic exchange of two particles to measure cyclotron frequency ratios with
measurement cycle length of four minutes has been demonstrated, which is a 50-fold
improvement to the last experiment comparing the proton-antiproton charge-to-mass
ratios [12]. The commissioning of the four-Penning trap system is ongoing with the
detection of single antiproton spin-flips being the next milestone. Using the contin-
uous Stern Gerlach effect to detect single antiproton spin transitions for the spec-
troscopy of the spin-precession frequency, and the sideband coupling technique for
the direct measurement of the cyclotron frequency, the antiproton magnetic moment
can be determined with a precision below 1 ppb, which will lead to a 1000-fold im-
proved test of the CPT invariance by comparing the proton and antiproton magnetic
moments.
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