Skip to main content
Log in

Competing ground states in transition metal oxides: Behavior of itinerant Sr1−x Ca x RuO3 close to the classical and quantum critical ferromagnetic phase transition

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The ferromagnetic (FM) phase transition of the itinerant electron-system Sr1−x Ca x RuO3 can be tuned by chemical composition resulting in a quantum critical point (QCP) at the critical concentration x c ≈ 0.7. Applying epitaxial pressure at constant x leads to a reduction of the Curie temperature T C which is found to be proportional to the shrinkage of the unit-cell volume V uc , shifting x c to higher values for tensile strained films. Surprisingly, the tetragonal distortion seems to play here only a minor role. With increasing x the critical scaling of the order parameter shows unusual behavior. The magnetic critical exponents β, γ, and δ change systematically from typical mean-field values at x = 0 with increasing x towards β = 1, γ = 0.9 and δ = 1.6 at x = 0.7. The results are discussed with respect to a crossover from mean-field-like behavior at x = 0 to a line of fixed points that might emerge in the strong-disorder limit as the system approaches the QCP at or near x c . Magnetic inhomogeneities are indeed suggested by a non-vanishing magnetic moment at x c and the evidence of a Griffiths phase as well as glass-like behavior close to x c . Although spin fluctuations certainly play an important role around x c as proposed previously, our highly accurate data of the magnetization M(T,B) and specific heat C(T,B) for x = 0.7 suggest dynamic scaling with an unusual dynamic exponent z = 1.8, incompatible with standard spin-fluctuation theories at a ferromagnetic QCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001)

    Article  ADS  Google Scholar 

  2. H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  3. J.M. Longo, P.M. Raccah, J.B. Goodenough, J. Appl. Phys. 39, 1327 (1968)

    Article  ADS  Google Scholar 

  4. H. Kobayashi, M. Nagata, R. Kanno, Y. Kawamoto, Mater. Res. Bull. 29, 1271 (1994)

    Article  Google Scholar 

  5. S. Lee, J.R. Zhang, S. Torii, S. Choi, D.Y. Cho, T. Kamiyama, J. Yu, K.A. McEwen, J.G. Park, J. Phys.: Condes. Matter 25, 465601 (2013)

    ADS  Google Scholar 

  6. K. Yoshimura, T. Imai, T. Kiyama, K.R. Thurber, A.W. Hunt, K. Kosuge, Phys. Rev. Lett. 83, 4397 (1999)

    Article  ADS  Google Scholar 

  7. J.S. Zhou, K. Matsubayashi, Y. Uwatoko, C.Q. Jin, J.G. Cheng, J.B. Goodenough, Q.Q. Liu, T. Katsura, A. Shatskiy, E. Ito, Phys. Rev. Lett. 101, 077206 (2008)

    Article  ADS  Google Scholar 

  8. I.I. Mazin, D.J. Singh, Phys. Rev. B 56, 2556 (1997)

    Article  ADS  Google Scholar 

  9. J. Pietosa, B. Dabrowski, A. Wisniewski, R. Puzniak, R. Kiyanagi, T. Maxwell, J.D. Jorgensen, Phys. Rev. B 77, 104410 (2008)

    Article  ADS  Google Scholar 

  10. J.J. Hamlin, S. Deemyad, J.S. Schilling, M.K. Jacobsen, R.S. Kumar, A.L. Cornelius, G. Cao, J.J. Neumeier, Phys. Rev. B 76, 014432 (2007)

    Article  ADS  Google Scholar 

  11. E.P. Wohlfarth, Physics of Solids under High Pressure, edited by J.S. Schilling, R.N. Shelton (North-Holland, Amsterdam, 1981)

  12. M.B. Maple, M.C. de Andrade, J. Herrmann, Y. Dalichaouch, D.A. Gajewski, C.L. Seaman, R. Chau, R. Movshovich, M.C. Aronson, R. Osborn, Low Temp. Phys. 99, 223 (1995)

    Article  ADS  Google Scholar 

  13. M. Uhlarz, C. Pfleiderer, S.M. Hayden, Phys. Rev. Lett. 93, 256404 (2004)

    Article  ADS  Google Scholar 

  14. C. Pfleiderer, A.D. Huxley, Phys. Rev. Lett. 89, 147005 (2002)

    Article  ADS  Google Scholar 

  15. A.V. Chubukov, C. Pépin, J. Rech, Phys. Rev. Lett. 92, 147003 (2004)

    Article  ADS  Google Scholar 

  16. Y.J. Uemura, T. Goto, I.M. Gat-Malureanu, J.P. Carlo, P.L. Russo, A.T. Savici, A. Aczel, G.J. McDougall, J.A. Rodriguez, G.M. Luke, S.R. Dunsiger, A. McCollam, J. Arai, Ch. Pfleiderer, P. Bni, K. Yoshimura, E. Baggio-Saitovich, M.B. Fontes, J. Larrea, Y.V. Sushko, J. Sereni, Nature Phys. 3, 29 (2007)

    Article  ADS  Google Scholar 

  17. T. Vojta, J. Phys. A 39, R143 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S. Ubaid-Kassis, T. Vojta, A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010)

    Article  ADS  Google Scholar 

  19. T. Kiyama, K. Yoshimura, K. Kosuge, H. Michor, G. Hilscher, J. Phys. Soc. Jpn. 67, 307 (1998)

    Article  ADS  Google Scholar 

  20. K. Yoshimura, T. Imai, T. Kiyama, K.R. Thurber, A.W. Hunt, K. Kosuge, Phys. Rev. Lett. 83, 4397 (1999)

    Article  ADS  Google Scholar 

  21. R. Konno, T. Moriya, J. Phys. Soc. Jpn. 56, 3270 (1987)

    Article  ADS  Google Scholar 

  22. L. Demkó, S. Bordács, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda, B. Dóra, H. Yamada, M. Kawasaki, Y. Tokura, I. Kézsmárki, Phys. Rev. Lett. 108, 185701 (2012)

    Article  ADS  Google Scholar 

  23. I.M. Gat-Malureanu, J.P. Carlo, T. Goko, A. Fukuya, T. Ito, P.P. Kyriakou, M.I. Larkin, G.M. Luke, P.L. Russo, A.T. Savici, Phys. Rev. B 84, 224415 (2011)

    Article  ADS  Google Scholar 

  24. C.L. Huang, D. Fuchs, M. Wissinger, R. Schneider, M.C. Lin, M. Scheurer, J. Schmalian, H. v. Löhneysen (to be published) (2014)

  25. F. Fukunaga, N. Tsuda, J. Phys. Soc. Jpn. 63, 3798 (1994)

    Article  ADS  Google Scholar 

  26. H. Kobayashi, M. Nagata, R. Kanno, Y. Kawamoto, Mater. Res. Bull. 29, 1271 (1994)

    Article  Google Scholar 

  27. G. Cao, S. McCall, M. Shepard, J.E. Crow, R.P. Guertin, Phys. Rev. B 56, 321 (1997)

    Article  ADS  Google Scholar 

  28. J. Okamoto, T. Okane, Y. Saitoh, K. Terai, S.I. Fujimori, Y. Muramatsu, K. Yoshii, K. Mamiya, T. Koide, A. Fujimori, Z. Fang, Y. Takeda, M. Takano, Phys. Rev. B 76, 184441 (2007)

    Article  ADS  Google Scholar 

  29. D. Fuchs, M. Wissinger, J. Schmalian, C.-L. Huang, R. Fromknecht, R. Schneider, H. v. Löhneysen, Phys. Rev. B 89, 174405 (2014)

    Article  ADS  Google Scholar 

  30. P. Rhodes, E.P. Wohlfarth, Proc. Roy. Soc. A 273, 247 (1963)

    Article  ADS  Google Scholar 

  31. E.P. Wohlfarth, J. Magn. Mag. Mater. 7, 113 (1987)

    Article  ADS  Google Scholar 

  32. M. Wissinger, D. Fuchs, L. Dieterle, H. Leiste, R. Schneider, D. Gerthsen, H. v. Löhneysen, Phys. Rev. B 83, 144430 (2011)

    Article  ADS  Google Scholar 

  33. C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. van Dover, J.H. Marshall, J.W. P. Hsu, J.J. Krajewski, W.F. Peck, Science 258, 1766 (1992)

    Article  ADS  Google Scholar 

  34. Q. Gan, R.A. Rao, C.B. Eom, J.L. Garrett, M. Lee, Appl. Phys. Lett. 72, 978 (1998)

    Article  ADS  Google Scholar 

  35. B.W. Lee, C.U. Jung, Appl. Phys. Lett. 96, 102507 (2010)

    Article  ADS  Google Scholar 

  36. A. Grutter, F. Wong, E. Arenholz, M. Liberati, A. Vailionis, Y. Suzuki, Appl. Phys. Lett. 96, 082509 (2010)

    Article  ADS  Google Scholar 

  37. A.T. Zayak, X. Huang, J.B. Neaton, K.M. Rabe, Phys. Rev. B 77, 214410 (2008)

    Article  ADS  Google Scholar 

  38. F. LeMarrec, A. Demuer, D. Jaccard, J.M. Triscone, M.K. Lee, C.B. Eom, Appl. Phys. Lett. 80, 2338 (2002)

    Article  ADS  Google Scholar 

  39. Y.B. Chen, J. Zhou, F.X. Wu, W.J. Ji, S.T. Zhang, Y.F. Chen, Y.Y. Zhu, Appl. Phys. Lett. 96, 182502 (2010)

    Article  ADS  Google Scholar 

  40. The in-plane lattice strain is given by the lattice mismatch of SRO between film and bulk material: 𝜖xx = (aa0)/a0 − 1.77%, a and a0 being the in-plane lattice parameters of the film and bulk, respectively

  41. J. Park, S.-J. Oh, J.-H. Park, D.M. Kim, C.-B. Eom, Phys. Rev. B 69, 085108 (2004)

    Article  ADS  Google Scholar 

  42. M. Takizawa, D. Toyota, H. Wadati, A. Chikamatsu, H. Kumigashira, A. Fujimori, M. Oshima, Z. Fang, M. Lippmaa, M. Kawasaki, H. Koinuma, Phys. Rev. B 72, 060404 (2005)

    Article  ADS  Google Scholar 

  43. C.Q. Jin, J.S. Zhou, J.B. Goodenough, Q.Q. Liu, J.G. Zhao, L.X. Yang, Y. Yu, R.C. Yu, T. Katsura, A. Shatskiy, E. Ito, Proc. Natl. Acad. Sci. (USA) 105, 7115 (2008)

    Article  ADS  Google Scholar 

  44. J.G. Cheng, J.S. Zhou, J.B. Goodenough, Phys. Rev. B 81, 134412 (2010)

    Article  ADS  Google Scholar 

  45. D. Kim, B.L. Zink, F. Hellman, S. McCall, G. Cao, J.E. Crow, Phys. Rev. B 67, 100406 (2003)(R)

    Article  ADS  Google Scholar 

  46. K. Yoshimura, Y. Nakamura, Solid State Com. 56, 767 (1985)

    Article  ADS  Google Scholar 

  47. D.A. Sokolov, M.C. Aronson, W. Gannon, Z. Fisk, Phys. Rev. Lett. 96, 116404 (2006)

    Article  ADS  Google Scholar 

  48. N.T. Huy, A. Gasparini, D.E. de Nijs, Y. Huang, J.C.P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görlach, H. v. Löhneysen, Phys. Rev. Lett. 99, (2007) 067006

    Article  ADS  Google Scholar 

  49. T. Akazawa, H. Hidakau, H. Kotegawa, T.C. Kobayashi, T. Fujiwara, E. Yamamoto, Y. Haga, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 73, 3129 (2004)

    Article  ADS  Google Scholar 

  50. Y. Itoh, T. Mizoguchi, K. Yoshimura, J. Phys. Soc. Jpn. 77, 123702 (2008)

    Article  ADS  Google Scholar 

  51. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  52. S.N. Kaul, J. Mag. Mag. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  53. A. Hankey, H.E. Stanley, Phys. Rev. B 6, 3515 (1972)

    Article  ADS  Google Scholar 

  54. J.G. Cheng, J.S. Zhou, J.B. Goodenough, C.Q. Jin, Phys. Rev. B 85, 184430 (2012)

    Article  ADS  Google Scholar 

  55. M.F. Collins, Magnetic Critical Scattering, Oxford Series on Neutron Scattering in Condensed Matter, Vol. 4 (Oxford University Press, 1989)

  56. P. Calabrese, P. Parruccini, A. Pelissetto, E. Vicari, Phys. Rev. E 69, 036120 (2004)

    Article  ADS  Google Scholar 

  57. D. Belitz, T.R. Kirkpatrick, M.T. Mercaldo, S.L. Sessions, Phys. Rev. B. 63, 174428 (2001)

    Article  ADS  Google Scholar 

  58. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  59. A.T. Ogielski, Phys. Rev. B 32, 7384 (1985)

    Article  ADS  Google Scholar 

  60. W. Kinzel, K. Binder, Phys. Rev. B 29, 1300 (1984)

    Article  ADS  Google Scholar 

  61. P. Morin, D. Schmitt, Phys. Rev. B 23, 5936 (1981)

    Article  ADS  Google Scholar 

  62. S. Chikazawa, S. Taniguchi, H. Matsuyama, Y. Miyako, J. Magn. Magn. Mater. 31–34, 1355 (1983)

    Article  Google Scholar 

  63. T. Vojta, J. Schmalian, Phys. Rev. B 72, 045438 (2005)

    Article  ADS  Google Scholar 

  64. J.A. Hoyos, T. Vojta, Phys. Rev. B 75, 104418 (2007)

    Article  ADS  Google Scholar 

  65. V. Dobrosavljevic, E. Miranda, Phys. Rev. Lett. 94, 187203 (2005)

    Article  ADS  Google Scholar 

  66. J.A. Hertz, Phys. Rev. B 14, 1165 (1976)

    Article  ADS  Google Scholar 

  67. A.J. Millis, Phys. Rev. B 48, 7183 (1993)

    Article  ADS  MATH  Google Scholar 

  68. T. Moriya, T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995)

    Article  ADS  Google Scholar 

  69. A.L. Chubukov, D.L. Maslov, Phys. Rev. B 68, 155113 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fuchs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, D., Huang, C., Schmalian, J. et al. Competing ground states in transition metal oxides: Behavior of itinerant Sr1−x Ca x RuO3 close to the classical and quantum critical ferromagnetic phase transition. Eur. Phys. J. Spec. Top. 224, 1105–1126 (2015). https://doi.org/10.1140/epjst/e2015-02448-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02448-1

Keywords

Navigation