Skip to main content
Log in

Influence of container shape and size on surface-tension-driven Bénard convection

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the influence of the container size and shape on the main fluid flow characteristics of Surface-Tension-Driven Bénard Convection. Computations have been performed for high Prandtl number fluids and realistic boundary conditions in various configurations either at steady state when it exists or unsteady one for Ma c Ma ≤ 2.5Ma c . The threshold value, its associated pattern and secondary bifurcation one are presented for each configuration. For very small aspect ratios, it turns out that the threshold value is determined by the friction coefficient whereas for medium size aspect ratios both size and shape enters the game in a more subtle way. Some containers have been found to induce a quasi-perfect hexagonal pattern in their core region provided they satisfy shape and size compatibility conditions. Otherwise, dynamical regimes may appear even close to the threshold so their peculiar characteristics have been reported and analyzed as they seem to be intrinsic to small aspect ratio configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Bénard, Rev. Gén. Sci. Pures Appl. 11, 1261 (1900)

    Google Scholar 

  2. P. Cerisier, C. Perez-Garcia, C. Jamond, J. Pantaloni, Phys. Rev. A. 33, 1949 (1987)

    Article  ADS  Google Scholar 

  3. P. Cerisier, M. Zouine, Phys. Chem. Hydrodyn. 11, 659 (1989)

    Google Scholar 

  4. B. Cochelin, M. Medale, J. Comput. Phys. 236, 594 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Colinet, J.C. Legros, M.G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Wiley-VCH, 2001)

  6. P.C. Dauby, P. Colinet, D. Jonhson, Phys. Rev. 61, 2663 (2000)

    ADS  Google Scholar 

  7. P.C. Dauby, G. Lebon, J. Fluid Mech. 329, 25 (1996)

    Article  ADS  MATH  Google Scholar 

  8. P.C. Dauby, G. Lebon, E. Bouhy, Phys. Rev. E. 56, 520 (1997)

    Article  ADS  Google Scholar 

  9. H.A. Dijkstra, J. Fluid Mech. 243, 73 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. H.A. Dijkstra, Microgravity Sci. Technol. 8, 155 (1995)

    Google Scholar 

  11. B. Echebarria, D. Krmpotic, C. Perez-Garcia, Physica D: Nonlinear Phenom. 99, 487 (1997)

    Article  ADS  MATH  Google Scholar 

  12. K. Eckert, M. Bestehorn, A. Thess, J. Fluid Mech. 356, 155 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. D. Jonhson, R. Narayanan, Phys. Rev. E. 54, R3102 (1996)

    Article  ADS  Google Scholar 

  14. E.L. Koschmieder, S.A. Prahl, J. Fluid Mech. 215, 571 (1990)

    Article  ADS  Google Scholar 

  15. H.L. Mancini, D. Maza, Phys. Rev. E. 55, 2757 (1997)

    Article  ADS  Google Scholar 

  16. M. Medale, P. Cerisier, Num. Heat. Trans. A. 42, 55 (2002)

    Article  Google Scholar 

  17. M. Medale, B. Cochelin, J. Comp. Phys. 228, 8249 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A.A. Nepomnyahchy, M.G. Velarde, P. Colinet, Interfacial Phenomena and Convection. Monographs and Surveys in Pure and Applied Mathematics 124 (Chapman & Hall/CRC, 2002)

  19. T. Ondarç uhu, G. Mindlin, H.L. Mancini, C. Perez-Garcia, Phys. Rev. Lett. 70, 3892 (1993)

    Article  ADS  Google Scholar 

  20. A. Thess, S.A. Orszag, J. Fluid Mech. 283, 201 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. H. Tomita, K. Abe, Phys. Fluids 16, 1389 (2000)

    Article  ADS  Google Scholar 

  22. A. Wierschem, P. Cerisier, P. Gallet, M. Velarde, J. Non-equilib. Thermodyn. 22, 162 (1997)

    Article  ADS  Google Scholar 

  23. K.H. Winters, T. Tesser, K.A. Cliffe, Physica D. 30, 387 (1998)

    Google Scholar 

  24. A. Zaman, R. Narayanan, J. Colloid Interface Sci. 179, 151 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Medale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medale, M., Cerisier, P. Influence of container shape and size on surface-tension-driven Bénard convection. Eur. Phys. J. Spec. Top. 224, 217–227 (2015). https://doi.org/10.1140/epjst/e2015-02354-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02354-6

Keywords

Navigation