Skip to main content
Log in

Reexamining classical and quantum models for the D-Wave One processor

The role of excited states and ground state degeneracy

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We revisit the evidence for quantum annealing in the D-Wave One device (DW1) based on the study of random Ising instances. Using the probability distributions of finding the ground states of such instances, previous work found agreement with both simulated quantum annealing (SQA) and a classical rotor model. Thus the DW1 ground state success probabilities are consistent with both models, and a different measure is needed to distinguish the data and the models. Here we consider measures that account for ground state degeneracy and the distributions of excited states, and present evidence that for these new measures neither SQA nor the classical rotor model correlate perfectly with the DW1 experiments. We thus provide evidence that SQA and the classical rotor model, both of which are classically efficient algorithms, do not satisfactorily explain all the DW1 data. A complete model for the DW1 remains an open problem. Using the same criteria we find that, on the other hand, SQA and the classical rotor model correlate closely with each other. To explain this we show that the rotor model can be derived as the semiclassical limit of the spin-coherent states path integral. We also find differences in which set of ground states is found by each method, though this feature is sensitive to calibration errors of the DW1 device and to simulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A.J. Berkley, E.M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, et al., Superconductor Sci. Technol. 23(6), 065004 (2010)

    Article  ADS  Google Scholar 

  2. A.J. Berkley, M.W. Johnson, P. Bunyk, R. Harris, J. Johansson, T. Lanting, E. Ladizinsky, E. Tolkacheva, M.H.S. Amin, G. Rose, Superconductor Sci. Technol. 23, 105014 (2010)

    Article  ADS  Google Scholar 

  3. R. Harris, M.W. Johnson, T. Lanting, A.J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh et al., Phys. Rev. B 82, 024511 (2010)

    Article  ADS  Google Scholar 

  4. P.I. Bunyk, E. Hoskinson, M.W. Johnson, E. Tolkacheva, F. Altomare, A.J. Berkley, R. Harris, J.P. Hilton, T. Lanting, J. Whittaker, [arXiv:1401.5504] (2014), http://arXiv.org/abs/1401.5504

  5. P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  6. A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)

    Article  ADS  Google Scholar 

  7. T. Kadowaki, H. Nishimori, Phys. Rev. E 58(5), 5355 (1998)

    Article  ADS  Google Scholar 

  8. J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

    Article  ADS  Google Scholar 

  9. J. Brooke, T.F. Rosenbaum, G. Aeppli, Nature 413, 610 (2001)

    Article  ADS  Google Scholar 

  10. G.E. Santoro, E. Tosatti, J. Phys. A: Math. General 39, R393 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. S. Morita, H. Nishimori, J. Math. Phys. 49, 125210 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. V. Bapst, L. Foini, F. Krzakala, G. Semerjian, F. Zamponi, Phys. Reports 523, 127 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, et al., Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  15. T. Lanting, A.J. Przybysz, A.Y. Smirnov, F.M. Spedalieri, M.H. Amin, A.J. Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk, et al., Phys. Rev. X 4, 021041 (2014)

    Google Scholar 

  16. S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2014)

    Article  Google Scholar 

  17. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. J.A. Smolin, G. Smith, [arXiv:1305.4904] (2013), http://arXiv.org/abs/1305.4904

  19. L. Wang, T.F. Rønnow, S. Boixo, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, [arXiv:1305.5837] (2013), http://arxiv.org/abs/1305.5837

  20. T. Gilbert, IEEE Trans. Magn. 40(6), 3443 (2004)

    Article  ADS  Google Scholar 

  21. R. Martoňák, G.E. Santoro, E. Tosatti, Phys. Rev. B 66, 094203 (2002)

    Article  ADS  Google Scholar 

  22. G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295(5564), 2427 (2002)

    Article  ADS  Google Scholar 

  23. S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, [arXiv:1401.7087] (2014), http://arXiv.org/abs/1401.7087

  24. S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, D.A. Lidar, Nat. Commun. 4 (2013)

  25. W. Vinci, T. Albash, A. Mishra, P.A. Warburton, D.A. Lidar, [arXiv:1403.4228] (2014), http://arXiv.org/abs/1403.4228

  26. S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, [arXiv:1404.6499] (2014), http://arXiv.org/abs/1404.6499

  27. T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Smelyanskiy, lecture presented at AQC14 (2014)

  29. T. Lanting, D-Wave Inc. (private communications) (2013)

  30. M. Suzuki, Progr. Theor. Phys. 56, 1454 (1976)

    Article  ADS  MATH  Google Scholar 

  31. F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A 6, 2211 (1972)

    Article  ADS  Google Scholar 

  32. E. Lieb, Commun. Math. Phys. 31, 327 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S. Kirchner, J. Low Temp. Phys. 161, 282 (2010)

    Article  ADS  Google Scholar 

  34. H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. X 4, 021008 (2014)

    Google Scholar 

  35. Y. Matsuda, H. Nishimori, H.G. Katzgraber, New J. Phys. 11, 073021 (2009)

    Article  ADS  Google Scholar 

  36. P.J.D. Crowley, T. Duric, W. Vinci, P.A. Warburton, A.G. Green, [arXiv:1405.5185] (2014), http://arXiv.org/abs/1405.5185

  37. T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Science 345, 420 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.A. Lidar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albash, T., Rønnow, T., Troyer, M. et al. Reexamining classical and quantum models for the D-Wave One processor. Eur. Phys. J. Spec. Top. 224, 111–129 (2015). https://doi.org/10.1140/epjst/e2015-02346-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02346-0

Keywords

Navigation