Skip to main content
Log in

Quantum tunneling vs. thermal effects in experiments on adiabatic quantum computing

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Traditional simulated annealing uses thermal fluctuations for convergence in optimization problems. Quantum tunneling provides a different mechanism for moving between states, with the potential for reduced time scales and different outcomes. Thermal and quantum annealing are compared in two concentration regimes of a model disordered magnet, where the effects of quantum mechanics can be tuned both by varying an applied magnetic field and by controlling the strength of thermal coupling between the magnet and an external heat bath. The results indicate that quantum annealing hastens convergence to the final state, and that the quantum character of the final state can be engineered thermodynamically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  2. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. G.E. Santoro, R. Martonak, E. Tosatti, R. Car, Science 295, 2427 (2002)

    Article  ADS  Google Scholar 

  4. A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. M.W. Johnson, et al., Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  6. J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)

    Article  ADS  Google Scholar 

  7. J. Brooke, T.F. Rosenbaum, G. Aeppli, Nature 413, 610 (2001)

    Article  ADS  Google Scholar 

  8. M.A. Schmidt, D.M. Silevitch, G. Aeppli, T.F. Rosenbaum, Proc. Natl. Acad. Sci 111, 3689 (2014)

    Article  ADS  Google Scholar 

  9. S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nature Phys. 10, 218 (2014)

    Article  ADS  Google Scholar 

  10. P. Beauvillain, J. Renard, I. Laursen, P. Walker, Phys. Rev. B 18, 3360 (1978)

    Article  ADS  Google Scholar 

  11. P. Chakraborty, P. Henelius, H. Kjonsberg, A. Sandvik, S. Girvin, Phys. Rev. B 70, 144411 (2004)

    Article  ADS  Google Scholar 

  12. P. Hansen, T. Johansson, R. Nevald, Phys. Rev. B 12, 5315 (1975)

    Article  ADS  Google Scholar 

  13. W. Wu, B. Ellman, T.F. Rosenbaum, G. Aeppli, D.H. Reich, Phys. Rev. Lett. 67, 2076 (1991)

    Article  ADS  Google Scholar 

  14. D. Bitko, T.F. Rosenbaum, G. Aeppli, Phys. Rev. Lett. 77, 940 (1996)

    Article  ADS  Google Scholar 

  15. D.M. Silevitch, D. Bitko, J. Brooke, S. Ghosh, G. Aeppli, T.F. Rosenbaum, Nature 448, 567 (2007)

    Article  ADS  Google Scholar 

  16. D.H. Reich, B. Ellman, J. Yang, T.F. Rosenbaum, G. Aeppli, Phys. Rev. B 42, 4631 (1990)

    Article  ADS  Google Scholar 

  17. S.M.A. Tabei, M.J.P. Gingras, Y.-J. Kao, P. Stasiak, J.-Y. Fortin, Phys. Rev. Lett. 97, 237203 (2006)

    Article  ADS  Google Scholar 

  18. M. Schechter, Phys. Rev. B 77, 020401 (2008)

    Article  ADS  Google Scholar 

  19. J.A. Quilliam, S. Meng, C.G.A. Mugford, J.B. Kycia, Phys. Rev. Lett. 101, 187204 (2006)

    Article  ADS  Google Scholar 

  20. S. Ghosh, R. Parthasarathy, T.F. Rosenbaum, G. Aeppli, Science 296, 2195 (2002)

    Article  ADS  Google Scholar 

  21. R. Giraud, W. Wernsdorfer, A. Tkachuk, D. Mailly, B. Barbara, Phys. Rev. Lett. 87, 057203 (2001)

    Article  ADS  Google Scholar 

  22. R. Giraud, A.M. Tkachuk, B. Barbara, Phys. Rev. Lett. 91, 257204 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.F. Rosenbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silevitch, D., Rosenbaum, T. & Aeppli, G. Quantum tunneling vs. thermal effects in experiments on adiabatic quantum computing. Eur. Phys. J. Spec. Top. 224, 25–34 (2015). https://doi.org/10.1140/epjst/e2015-02340-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02340-6

Keywords

Navigation