Skip to main content
Log in

Active Brownian motion in a narrow channel

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. For a review see: P.S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, P. Talkner, Chem. Phys. Chem. 10, 45 (2009)

    Google Scholar 

  2. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  3. S. Denisov, S. Flach, P. Hänggi, Phys. Rep. 538, 77 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

    Article  ADS  Google Scholar 

  5. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  6. F. Schweitzer, Brownian Agents and Active Particles (Springer, Berlin, 2003)

  7. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  8. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  9. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)

    Article  ADS  Google Scholar 

  10. S. Jiang, S. Granick (eds.), Janus Particle Synthesis, Self-Assembly and Applications (RSC Publishing, Cambridge, 2012)

  11. A. Walther, A.H.E. Müller, Chem. Rev. 113, 5194 (2013)

    Article  Google Scholar 

  12. W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)

    Article  Google Scholar 

  13. J.G. Gibbs, Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009)

    Article  ADS  Google Scholar 

  14. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  15. G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)

    Article  ADS  Google Scholar 

  16. H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)

    Article  ADS  Google Scholar 

  17. L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O.G. Schmidt, G. Cuniberti, ACS Nano 7, 1360 (2013)

    Article  Google Scholar 

  18. see, e.g., Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1823 (2010)

    Article  Google Scholar 

  19. A. Búzás, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, P. Ormos, Appl. Phys. Lett. 101, 041111 (2012)

    Article  ADS  Google Scholar 

  20. S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008)

    Article  Google Scholar 

  21. B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. 103, 068102 (2009)

    Article  ADS  Google Scholar 

  22. C.J. Brokaw, J. Exp. Biol. 35, 197 (1958)

    Google Scholar 

  23. C.J. Brokaw, J. Cell. Comp. Physiol. 54, 95 (1959)

    Article  Google Scholar 

  24. M. Mijalkov, G. Volpe, Soft Matter 9, 6376 (2013)

    Article  ADS  Google Scholar 

  25. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)

    Article  ADS  Google Scholar 

  26. A. Boymelgreen, G. Yossifon, S. Park, T. Miloh, Phys. Rev. E 89, 011003(R) (2014)

    Article  ADS  Google Scholar 

  27. A. Sen, M. Ibele, Y. Hong, D. Velegol, Faraday Discuss. 143, 15 (2009)

    Article  ADS  Google Scholar 

  28. A. Zöttl, H. Stark, Phys. Rev. Lett. 108, 218104 (2012)

    Article  ADS  Google Scholar 

  29. P.K. Radtke, L. Schimansky-Geier, Phys. Rev. E 85, 051110(R) (2012)

    Article  ADS  Google Scholar 

  30. T.R. Kline, W.F. Paxton, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 44, 744 (2005)

    Article  Google Scholar 

  31. B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)

    ADS  Google Scholar 

  32. S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Ripoll, P. Holmqvist, R.G. Winkler, G. Gompper, J.K.G. Dhont, M.P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008)

    Article  ADS  Google Scholar 

  34. I. Buttinoni, J. Bialkè, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  35. D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)

    Article  ADS  Google Scholar 

  36. P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Europhys. Lett. 98, 50002 (2012)

    Article  ADS  Google Scholar 

  37. P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Phys. Rev. E 86, 021112 (2012)

    Article  ADS  Google Scholar 

  38. H. Brenner, D.A. Edwards, Macrotransport Processes (Butterworth-Heinemann, New York, 1993)

  39. P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, Phys. Rev. E 89, 062115 (2014)

    Article  ADS  Google Scholar 

  40. Y. Li, P.K. Ghosh, F. Marchesoni, B. Li (submitted) (2014)

  41. Y. Fily, A. Baskaran, M.F. Hagan [arXiv:1402.5583] [cond-mat.soft]

  42. A. Fick, Ann. Phys. Chem. 94, 59 (1855)

    Article  ADS  Google Scholar 

  43. M.H. Jacobs, Diffusion processes (Springer, New York, 1967)

  44. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)

    Article  Google Scholar 

  45. L. Machura, M. Kostur, P. Talkner, J. Luczka, F. Marchesoni, P. Hänggi, Phys. Rev. E 70, 061105 (2004)

    Article  ADS  Google Scholar 

  46. Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)

    Article  ADS  Google Scholar 

  47. P.S. Burada, G. Schmid, D. Reguera, J.M. Rubi, P. Hänggi, Phys. Rev. E 75, 051111 (2007)

    Article  ADS  Google Scholar 

  48. L. Bosi, P.K. Ghosh, F. Marchesoni, J. Chem. Phys. 137, 174110 (2012)

    Article  ADS  Google Scholar 

  49. F. Marchesoni, S. Savel’ev, Phys. Rev. E 80, 011120 (2009)

    Article  ADS  Google Scholar 

  50. details are given in the PhD thesis of Xue Ao (Augsburg University, in preparation)

  51. M. Borromeo, F. Marchesoni, Chem. Phys. 375, 536 (2010)

    Article  ADS  Google Scholar 

  52. M. Borromeo, F. Marchesoni, P.K. Ghosh, J. Chem. Phys 134, 051101 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, X., Ghosh, P., Li, Y. et al. Active Brownian motion in a narrow channel. Eur. Phys. J. Spec. Top. 223, 3227–3242 (2014). https://doi.org/10.1140/epjst/e2014-02329-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02329-1

Keywords

Navigation