Skip to main content
Log in

A random growth model for power grids and other spatially embedded infrastructure networks

The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. BDEW, Press Release, http://www.bdew.de/internet.nsf/id/20130412-pi-deutsches-stromnetz-ist-18-millionen-kilometer-lang-de (accessed: 20.01.2014)

  2. A. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Barthélemy, Phys. Reports 499, 1 (2011)

    Article  ADS  Google Scholar 

  4. O. Borůvka, Elektrotechnický Obz. 15, 153 (1926)

    Google Scholar 

  5. O. Borůvka, Elektrotechnický Obz. 15, 153 (1926)

    Google Scholar 

  6. C. Bracquemond, et al., Laboratoire Jean Kuntzmann, Appl. Math. Comput. Sci., Techn. Report 6 (2002)

  7. S. Buldyrev, et al., Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  8. D. Callaway, et al., Phys. Rev. E 64, 041902 (2001)

    Article  ADS  Google Scholar 

  9. E.W. Dijkstra, Numer. Math. 1, 269 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  10. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51.4, 1079 (2002)

    Article  ADS  Google Scholar 

  11. P. Erdos, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)

    MathSciNet  Google Scholar 

  12. K. Eriksen, et al., Phys. Rev. Lett. 90, 148701 (2003)

    Article  ADS  Google Scholar 

  13. E.N. Gilbert, Annals Math. Stat., 1141 (1959)

  14. C. Herrmann, et al., Phys. Rev. E 68, 1 (2003)

    Article  Google Scholar 

  15. V.N. Kublanovskaya, USSR Comput. Math. Math. Phys. 1, 637 (1962)

    Article  Google Scholar 

  16. J. Kruskal, Proc. Am. Math. Soc. 5 (1956)

  17. P. Menck, J. Kurths, Nonlinear Dyn. Electron. Syst., 144 (2012)

  18. P. Menck, et al., Nat. Comm. 5, 3969 (2014)

    Article  ADS  Google Scholar 

  19. M. Molloy, B. Reed, Random Struct. Algorithms 1 (1995)

  20. A. Motter, Y. Lai, Phys. Rev. E. 66, 065102 (2002)

    Article  ADS  Google Scholar 

  21. M. Newman, S. Strogatz, D. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  22. M. Newman, SIAM Rev. 45, 167 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. G. Pagani, M. Aiello, Smart Grid, IEEE Trans. 2, 538 (2011)

    Article  Google Scholar 

  24. G. Pagani, M. Aiello, Phys. A Stat. Mech. Its Appl. 1 (2013)

  25. R. Prim, Bell Syst. Tech. J. 36, 1389 (1957)

    Article  Google Scholar 

  26. M. Rosas-Casals, Topological Complexity of the Electricity Transmission Network (UPC, Barcelona, 2009)

  27. M. Rosvall, et al., Phys. Rev. E 67, 028701 (2005)

    Google Scholar 

  28. Z. Wang, A. Scaglione, R. Thomas, IEEE, Trans. Smart Grid 1, 28 (2010)

    Article  Google Scholar 

  29. P. Sen, et al., Phys. Rev. E 67, 036106 (2003)

    Article  ADS  Google Scholar 

  30. D. Watts, S. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  31. B.M. Waxman, IEEE J. Selected Areas Comm. 6.9, 1617 (1988)

    Article  Google Scholar 

  32. D. Witthaut, M. Timme, New J. Phys. 8, 083036 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schultz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, P., Heitzig, J. & Kurths, J. A random growth model for power grids and other spatially embedded infrastructure networks. Eur. Phys. J. Spec. Top. 223, 2593–2610 (2014). https://doi.org/10.1140/epjst/e2014-02279-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02279-6

Keywords

Navigation