Skip to main content
Log in

A soft matter in construction – Statistical physics approach to formation and mechanics of C–S–H gels in cement

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Calcium-silicate hydrate (C–S–H) is the main binding agent in cement and concrete. It forms at the beginning of cement hydration, it progressively densifies as cement hardens and is ultimately responsible of concrete performances. This hydration product is a cohesive nano-scale gel, whose structure and mechanics are still poorly understood, in spite of its practical importance. Here we review some of the open questions for this fascinating material and a statistical physics approach recently developed, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C–S–H mechanics upon hardening. Our approach unveils how some distinctive features of the kinetics of cement hydration can be related to changes in the morphology of the gels and elucidates the role of nano-scale mechanical heterogeneities in the hardened C–S–H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J.M. Pellenq, H. Van Damme, MRS Bull. 29, 319 (2004)

    Article  Google Scholar 

  2. R.J. Flatt, N. Roussel, C.R. Cheeseman, J. Eur. Ceram. Soc. 32, 2787 (2012)

    Article  Google Scholar 

  3. K. Van Vliet, R. Pellenq, M.J. Buehler, J.C. Grossman, H. Jennings, F.J. Ulm, S. Yip, MRS Bull. 37, 395 (2012)

    Article  Google Scholar 

  4. A. Nonat, Cem. Concr. Res. 34, 1521 (2004)

    Article  Google Scholar 

  5. A.J. Allen, J.J. Thomas, H.M. Jennings, Nature Mater. 6, 311 (2007)

    Article  ADS  Google Scholar 

  6. I. Richardson, Cem. Concr. Res. 38, 137 (2008)

    Article  Google Scholar 

  7. J.J. Thomas, H.M. Jennings, Cem. Concr. Res. 36, 30 (2006)

    Article  Google Scholar 

  8. W.S. Chiang, E. Fratini, P. Baglioni, D. Liu, S.H. Chen, J. Phys. Chem. C 116, 5055 (2012)

    Article  Google Scholar 

  9. F. Ridi, E. Fratini, P. Baglioni, J. Colloid Interface Sci. 357, 255 (2011)

    Article  Google Scholar 

  10. S. Garrault, E. Finot, E. Lesniewska, A. Nonat, Mater. Struct. 38, 435 (2005)

    Article  Google Scholar 

  11. J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, J.J. Thomas, Cem. Concr. Res. 41, 1208 (2011)

    Article  Google Scholar 

  12. L.B. Skinner, S.R. Chae, C.J. Benmore, H.R. Wenk, P.J.M. Monteiro, Phys. Rev. Lett. 104, 195502 (2010)

    Article  ADS  Google Scholar 

  13. D. Bentz, Cement and Concrete Research 38, 196 (2008), Special Issue The 12th International Congress on the Chemistry of Cement, Montreal, Canada, July 8–13, 2007

  14. D. Lootens, P. Hébraud, E. Lécolier, H. Van Damme, Oil Gas Sci. Technol. 59, 31 (2004)

    Article  Google Scholar 

  15. L. Nachbaur, J. Mutin, A. Nonat, L. Choplin, Cem. Concr. Res. 31, 183 (2001)

    Article  Google Scholar 

  16. G. Constantinides, F.J. Ulm, J. Mech. Phys. Solids 55, 64 (2007)

    Article  MATH  ADS  Google Scholar 

  17. M. Vandamme, F.J. Ulm, Proc. Nat. Acad. Sci. 106, 10552 (2009)

    Article  ADS  Google Scholar 

  18. R.J.M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vliet, M.J. Buehler, S. Yip, F.J. Ulm, Proc. Natl. Acad. Sci. USA 106, 16102 (2009)

    Article  ADS  Google Scholar 

  19. S. Bishnoi, K.L. Scrivener, Cem. Concr. Res. 39, 266 (2009)

    Article  Google Scholar 

  20. J.W. Bullard, E. Enjolras, W.L. George, S.G. Satterfield, J.E. Terrill, Mod. Sim. Mater. Sci. Eng. 18, 025007 (2010)

    Article  ADS  Google Scholar 

  21. F. Tzschichholz, H.J. Herrmann, H. Zanni, Phys. Rev. E 53, 2629 (1996)

    Article  ADS  Google Scholar 

  22. H.M. Jennings, Cem. Concr. Res. 30, 101 (2000)

    Article  Google Scholar 

  23. H.M. Jennings, Cem. Concr. Res. 38, 275 (2008)

    Article  Google Scholar 

  24. S. Brisard, R.S. Chae, I. Bihannic, L. Michot, P. Guttmann, J. Thieme, G. Schneider, P.J. Monteiro, P. Levitz, Am. Mineral. 97, 480 (2012)

    Article  Google Scholar 

  25. I. Richardson, Cem. Concr. Res. 34, 1733 (2004)

    Article  Google Scholar 

  26. E.M. Gartner, Cem. Concr. Res. 27, 665 (1997)

    Article  Google Scholar 

  27. E.M. Gartner, K.E. Kurtis, P.J.M. Monteiro, Cem. Concr. Res. 30, 817 (2000)

    Article  Google Scholar 

  28. A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. McDonald, J. Phys. Chem. C 117, 403 (2013)

    Article  Google Scholar 

  29. E. Gallucci, P. Mathur, K. Scrivener, Cem. Concr. Res. 40, 4 (2010)

    Article  Google Scholar 

  30. S. Bishnoi, Cem. Concr. Res. 46, 30 (2013)

    Article  Google Scholar 

  31. K. Ioannidou, R.J.M. Pellenq, E. Del Gado, Soft Matter 10, 1121 (2014)

    Article  ADS  Google Scholar 

  32. S. Garrault, T. Behr, A. Nonat, J. Phys. Chem. B 110, 270 (2006), ISSN 1520-6106

    Article  Google Scholar 

  33. E. Masoero, J.J. Thomas, H.M. Jennings, J. Am. Ceram. Soc. (2013) (in press)

  34. R.J.M. Pellenq, J.M. Caillol, A. Delville, J. Phys. Chem. B 101, 8584 (1997)

    Article  Google Scholar 

  35. B. Jönsson, A. Nonat, C. Labbez, B. Cabane, H. Wennerström, Langmuir 21, 9211 (2005)

    Article  Google Scholar 

  36. R.M. Pellenq, N. Lequeux, H. van Damme, Cem. Concr. Res. 38, 159 (2008)

    Article  Google Scholar 

  37. Y.S. Jho, R. Brewster, S.A. Safran, P.A. Pincus, Langmuir 27, 4439 (2011)

    Article  Google Scholar 

  38. C. Plassard, E. Lesniewska, I. Pochard, A. Nonat, Langmuir 21, 7263 (2005)

    Article  Google Scholar 

  39. S. Lesko, E. Lesniewska, A. Nonat, J.C. Mutin, J.P. Goudonnet, Ultramicroscopy 86, 11 (2001)

    Article  Google Scholar 

  40. M.J. Booth, A.C. Eaton, A.D.J. Haymet, J. Chem. Phys. 103, 417 (1995)

    Article  ADS  Google Scholar 

  41. P. Attard, Electrolytes and the Electric Double Layer (John Wiley & Sons, Inc., 2007), p. 1

  42. A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia, A. Coniglio, Phys. Rev. E 74, 010403 (2006)

    Article  ADS  Google Scholar 

  43. P. Charbonneau, D.R. Reichman, Phys. Rev. E 75, 011507 (2007)

    Article  ADS  Google Scholar 

  44. L. Nicoleau, T. Gadt, L. Chitu, G. Maier, O. Paris, Soft Matter 9, 4864 (2013)

    Article  ADS  Google Scholar 

  45. E. Masoero, E. Del Gado, R.J.M. Pellenq, F.J. Ulm, S. Yip, Phys. Rev. Lett. 109, 155503 (2012)

    Article  ADS  Google Scholar 

  46. E. Masoero, E. Del Gado, R.J.M. Pellenq, S. Yip, F.J. Ulm, Soft Matter. 10, 491 (2014)

    Article  ADS  Google Scholar 

  47. H. Taylor, Adv. Cem. Based Mater. 1, 38 (1993)

    Article  Google Scholar 

  48. X. Cong, R.J. Kirkpatrick, Adv. Cem. Based Mater. 3, 144 (1996)

    Article  Google Scholar 

  49. I. Richardson, Cem. Concr. Res. 29, 1131 (1999)

    Article  ADS  Google Scholar 

  50. J.F. Lutsko, J. Appl. Phys. 65, (1989)

  51. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1985)

  52. G.W. Scherer, J. Zhang, J.A. Quintanilla, S. Torquato, Cem. Concr. Res. 42, 665 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Del Gado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Gado, E., Ioannidou, K., Masoero, E. et al. A soft matter in construction – Statistical physics approach to formation and mechanics of C–S–H gels in cement. Eur. Phys. J. Spec. Top. 223, 2285–2295 (2014). https://doi.org/10.1140/epjst/e2014-02264-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02264-1

Keywords

Navigation