Skip to main content
Log in

Recent advances in the simulation of particle-laden flows

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report, we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Phys. Rev. E 75, 066707 (2007)

    Article  ADS  Google Scholar 

  2. C. Aidun, J. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Janoschek, F. Toschi, J. Harting, Phys. Rev. E 82, 056710 (2010)

    Article  ADS  Google Scholar 

  5. H.L. Goldsmith, R. Skalak, Annu. Rev. Fluid Mech. 7, 213 (1975)

    Article  ADS  Google Scholar 

  6. A. Leonardi, F. Wittel, M. Mendoza, H. Herrmann, Multiphase debris flow simulations with the discrete element method coupled with a lattice-Boltzmann fluid. In Proceedings of III International Conference on Particle-based Methods, PARTICLES 2013 (2013)

  7. G. Sauermann, A. Poliakov, P. Rognon, H. Herrmann, Geomorphology 36, 47 (2000)

    Article  ADS  Google Scholar 

  8. A. Araújo, E. Partelli, T. Pöschel, J. AndradeJr., H. Herrmann, Sci. Rep. 3, 2858 (2013)

    ADS  Google Scholar 

  9. A. Lorke, M. Winterer, R. Schmechel, C. Schulz, Nanoparticles from the Gas Phase – Formation, Structure, Properties (Springer, Berlin, 2012)

  10. M.R. Robinson, S. Luding, M. Ramioli, Grain sedimentation with SPH-DEM and its validation. In Powders and Grains 2013 – AIP Conf. Proc., Vol. 1542 (2013), p. 1079

  11. Y. Tsuji, T. Oshima, Y. Morikawa, KONA 3, 38 (1985)

    Article  Google Scholar 

  12. T. Tanaka, T. Kawaguchi, Y. Tsuji, Int. J. Modern Phys. B 7, 1889 (1993)

    Article  ADS  Google Scholar 

  13. W. Kalthoff, S. Schwarzer, G. Ristow, H. Herrmann, Int. J. Mod. Phys. C 7, 543 (1996)

    Article  ADS  Google Scholar 

  14. K. Chu, A. Yu, Powder Technol. 179, 104 (2008)

    Article  Google Scholar 

  15. J. Link, L. Cuypers, N. Deen, J. Kuipers, Chem. Eng. Sci. 60, 3425 (2005)

    Article  Google Scholar 

  16. N. Deen, M.V.S. Annaland, M.V.D. Hoef, J. Kuipers, Chem. Eng. Sci. 62, 28 (2007)

    Article  Google Scholar 

  17. M.V.D. Hoef, M.V.S. Annaland, N. Deen, J. Kuipers, Annu. Rev. Fluid Mech. 40, 47 (2008)

    Article  ADS  Google Scholar 

  18. M.R. Robinson, M. Ramioli, S. Luding, Int. J. Multiphase Flow 59, 121 (2013)

    Article  Google Scholar 

  19. S. Srivastava, K. Yazdchi, S. Luding, Phil. Trans. R. Soc. A 372, 20130386 (2014)

    Article  MathSciNet  Google Scholar 

  20. A. Leonardi, F. Wittel, M. Mendoza, H. Herrmann, Comput. Part. Mech. 1, 3 (2014)

    Article  Google Scholar 

  21. W. Ge, L. Lu, J. Xu, Y. Yue, X. Liu, L. Li, EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows (2014) under review

  22. N. Guo, J. Zhao, Int. J. Numer. Meth. Engng. (2014) (in press) – DOI: 10.1002/nme.4702

  23. M. Hütter, J. Colloid Int. Sci. 231, 337 (2000)

    Article  Google Scholar 

  24. D. Petera, M. Muthukumar, J. Chem. Phys. 111, 7614 (1999)

    Article  ADS  Google Scholar 

  25. P. Ahlrichs, R. Everaers, B. Dünweg, Phys. Rev. E 64, 040501 (2001)

    Article  ADS  Google Scholar 

  26. L.E. Silbert, J.R. Melrose, R.C. Ball, Phys. Rev. E 56, 7067 (1997)

    Article  ADS  Google Scholar 

  27. G. Bossis, J.F. Brady, J. Chem. Phys. 80, 5141 (1984)

    Article  ADS  Google Scholar 

  28. A. Sierou, J.F. Brady, J. Fluid Mech. 448, 115 (2001)

    Article  MATH  ADS  Google Scholar 

  29. T. Phung, J. Brady, G. Bossis, J. Fluid Mech. 313, 181 (1996)

    Article  ADS  Google Scholar 

  30. J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988)

    Article  ADS  Google Scholar 

  31. M. Loewenberg, E. Hinch, J. Fluid. Mech. 321, 395 (1996)

    Article  MATH  ADS  Google Scholar 

  32. H.A. Knudsen, J.H. Werth, D.E. Wolf, Eur. Phys. J. E 27, 161 (2008)

    Article  Google Scholar 

  33. P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)

    Article  ADS  Google Scholar 

  34. A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. A. Komnik, J. Harting, H. Herrmann, J. Stat. Mech: Theor. Exp., P12003 (2004)

  36. G. Gompper, T. Ihle, D. Kroll, R. Winkler, Multi-Particle Collision dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids (Springer, 2009), p. 1

  37. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    Article  ADS  Google Scholar 

  38. A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)

    Article  ADS  Google Scholar 

  39. M. Hecht, J. Harting, T. Ihle, H. Herrmann, Phys. Rev. E 72, 011408 (2005)

    Article  ADS  Google Scholar 

  40. M. Hecht, J. Harting, M. Bier, J. Reinshagen, H. Herrmann, Phys. Rev. E 74, 021403 (2006)

    Article  ADS  Google Scholar 

  41. M.R. Robinson, S. Luding, M. Ramioli, SPH-DEM simulations of grain dispersion by liquid injection. In Powders and Grains 2013 – AIP Conf. Proc., Vol. 1542 (2013), p. 1122

  42. A. Fogelson, C. Peskin, J. Comput. Phys. 79, 50 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. S. Schwarzer, K. Höfler, B. Wachmann, Comp. Phys. Comm. 268, 121 (1999)

    Google Scholar 

  44. K. Höfler, S. Schwarzer, Phys. Rev. E 61, 7146 (2000)

    Article  ADS  Google Scholar 

  45. F. Fonseca, H. Herrmann, Physica A 342, 447 (2004)

    Article  ADS  Google Scholar 

  46. F. Fonseca, H. Herrmann, Physica A 345, 341 (2005)

    Article  ADS  Google Scholar 

  47. S. McNamara, E. Flekkøy, K. Måløy, Phys. Rev. E 61, 658 (2000)

    Article  Google Scholar 

  48. M. Strauß, H. Herrmann, S. McNamara, G. Niederreiter, K. Sommer, Particle Technol. 162, 16 (2006)

    Google Scholar 

  49. M. Strauß, S. McNamara, H. Herrmann, Granular Matter 9, 35 (2007)

    Article  MATH  Google Scholar 

  50. W. Ramsden, Proc. R. Soc. London 72, 156 (1903)

    Article  Google Scholar 

  51. S. Pickering, J. Chem. Soc., Trans. 91, 2001 (1907)

    Article  Google Scholar 

  52. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)

  53. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)

    Article  ADS  Google Scholar 

  54. X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)

    Article  ADS  Google Scholar 

  55. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)

    Article  ADS  Google Scholar 

  56. S. Lishchuk, C. Care, I. Halliday, Phys. Rev. E 67, 036701 (2003)

    Article  ADS  Google Scholar 

  57. J. Harting, H. Herrmann, E. Ben-Naim, Europhys. Lett. 83, 30001 (2008)

    Article  ADS  Google Scholar 

  58. K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat, M. Cates, Science 309, 2198 (2005)

    Article  ADS  Google Scholar 

  59. A. Joshi, Y. Sun, Phys. Rev. E 79, 066703 (2009)

    Article  ADS  Google Scholar 

  60. F. Jansen, J. Harting, Phys. Rev. E 83, 046707 (2011)

    Article  ADS  Google Scholar 

  61. S. Frijters, F. Günther, J. Harting, Soft Matter 8, 6542 (2012)

    Article  Google Scholar 

  62. F. Günther, F. Janoschek, S. Frijters, J. Harting, Comput. Fluids 80, 184 (2013)

    Article  Google Scholar 

  63. B. Binks, T. Horozov, Colloidal Particles at Liquid Interfaces (Cambridge University Press, 2006)

  64. B. Binks, Cur. Opin. Colloid Interface Sci. 7, 21 (2002)

    Article  Google Scholar 

  65. E. Kim, K. Stratford, R. Adhikari, M. Cates, Langmuir 24, 6549 (2008)

    Article  Google Scholar 

  66. A. Joshi, Y. Sun, Phys. Rev. E 82, 041401 (2010)

    Article  ADS  Google Scholar 

  67. N.-Q. Nguyen, A. Ladd, Phys. Rev. E 66, 046708 (2002)

    Article  ADS  Google Scholar 

  68. F. Janoschek, J. Harting, F. Toschi (submitted) (2014)

  69. G. Taylor, Proc. R. Soc. Lond. Ser. A 138, 41 (1932)

    Article  ADS  Google Scholar 

  70. G. Taylor, Proc. R. Soc. Lond. Ser. A 146, 501 (1934)

    Article  ADS  Google Scholar 

  71. B. Kaoui, J. Harting, C. Misbah, Phys. Rev. E 83, 066319 (2011)

    Article  ADS  Google Scholar 

  72. T. Anderson, R. Jackson, Ind. Eng. Chem. Fundam. 6, 527 (1967)

    Article  Google Scholar 

  73. J.J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  74. M. Robinson, J. Monaghan, Int. J. Num. Meth. Fluids 70, 37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. D. Price, J. Comp. Phys. 231, 759 (2012)

    Article  MATH  ADS  Google Scholar 

  76. R. Di Felice, Int. J. Multiph. Flow 20, 153 (1994)

    Article  MATH  Google Scholar 

  77. J.J. Monaghan, J. Comp. Phys. 110, 399 (1994)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harting, J., Frijters, S., Ramaioli, M. et al. Recent advances in the simulation of particle-laden flows. Eur. Phys. J. Spec. Top. 223, 2253–2267 (2014). https://doi.org/10.1140/epjst/e2014-02262-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02262-3

Keywords

Navigation