Skip to main content

Advertisement

Log in

Abstract

This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Fang, et al., IEEE Comm. Surv. Tutorials 14, 944 (2012)

    Article  Google Scholar 

  2. U.S. Department of Energy, Smart Grid/Department of Energy, Retrieved 2012-06-18

  3. P. Hines, et al., SIAM Math. Awareness Month (2011)

  4. H.-J. Appelrath, et al., Business Inf. Syst. Eng. 4, 1 (2012)

    Article  Google Scholar 

  5. A. Jones-Rooy, S. Page, Business Critical Rev. 24, 313 (2012)

    Article  Google Scholar 

  6. S. Gómez, et al., Phys. Rev. Lett. 110, 028701 (2013)

    Article  ADS  Google Scholar 

  7. F. Blaabjerg, et al., IEEE Trans. Ind. Electr. 53, 1398 (2006)

    Article  Google Scholar 

  8. Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics (Springer-Verlag, USA, 1975), p. 420

  9. G. Filatrella, et al., Eur. Phys. J. B 61, 485 (2008)

    Article  ADS  Google Scholar 

  10. R. Carareto, et al., Comm. Nonlinear Sci. Numer. Simul. 18, 1035 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. L. Pecora, T. Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  12. M. Rohden, et al., Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  13. D. Witthaut, Marc Timme, New J. Phys. 14, 083036 (2012)

    Article  Google Scholar 

  14. D. Braess, et al., Transp. Sci. 39, 446 (2005)

    Article  Google Scholar 

  15. D. Witthaut, M. Timme, Eur. Phys. J. B 86, 377 (2013)

    Article  ADS  Google Scholar 

  16. A. Motter, et al., Nat. Phys. 9, 191 (2013)

    Article  Google Scholar 

  17. F. Dorfler, F. Bullo, SIAM J. Cont. Opt. 50, 1616 (2012)

    Article  MathSciNet  Google Scholar 

  18. F. Dorfler, et al., Proc. Nat. Acad. Sci. 110, 2005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Simpson-Porco, et al., Automatica 49, 2603 (2013)

    Article  MathSciNet  Google Scholar 

  20. S. Lozano, et al., Eur. Phys. J. B 85, 231 (2012)

    Article  ADS  Google Scholar 

  21. H.-P. Ren, et al., Cascade Failure Analysis of Power Grid Using New Load Distribution Law (submitted)

  22. L. Duenas-Osorio, S. Vemuru, Struct. Safety 31, 157 (2009)

    Article  Google Scholar 

  23. I. Dobson, et al., Chaos: An Interdisciplinary J. Nonlinear Sci. 17, 026103 (2007)

    Article  Google Scholar 

  24. P. Hines, et al., IEEE Potentials 28, 24 (2009)

    Article  Google Scholar 

  25. M. Vaiman, et al., IEEE Trans. Power Syst. 27, 631 (2012)

    Article  Google Scholar 

  26. S. Pahwa, et al., Scientific Reports 4 (2014)

  27. G. Zhang, et al., Physica A 392, 3273 (2013)

    Article  ADS  Google Scholar 

  28. S. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  29. D. Watts, Proc. Nat. Acad. Sci. 99, 5766 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  31. G.A. Pagani, M. Aiello, Physica A 392, 2688 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y.-C. Lai, A.E. Motter, T. Nishikawa, Lect. Notes Phys. 650, 299 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. G.A. Pagani, M. Aiello, IEEE Trans. Smart Grid 2, 538 (2011)

    Article  Google Scholar 

  34. R. Albert, et al., Phys. Rev. E 69, 025103 (2004)

    Article  ADS  Google Scholar 

  35. D. Chassin, C. Posse. Physica A: Stat. Mech. Appl. 355, 667 (2005)

    Article  ADS  Google Scholar 

  36. P. Crucitti, et al., Physica A: Stat. Mech. Appl. 338, 92 (2004)

    Article  ADS  Google Scholar 

  37. M. Rosas-Casals, et al., Int. J. Bif. Chaos 17, 2465 (2007)

    Article  MATH  Google Scholar 

  38. P. Hines, et al., Proceedings of the 43th Hawau International Conference on Systems. Sciences (2010)

  39. E. Cotilla-Sanchez, et al., IEEE Syst. J. 6, 616 (2012)

    Article  ADS  Google Scholar 

  40. N. Rubido, et al., EPL (Europhysics Letters) 101, 68001 (2013)

    Article  ADS  Google Scholar 

  41. N. Rubido, et al., Phys. Rev. E 89, 012801 (2014)

    Article  ADS  Google Scholar 

  42. M. Eppstein, et al., IEEE Trans. Power Syst. 27, 1698 (2012)

    Article  Google Scholar 

  43. E. Cotilla-Sanchez, et al., IEEE Trans. Power Syst. 28, 4979 (2013)

    Article  Google Scholar 

  44. W. Quattrociocchi, et al., PLoS ONE 9, e87986 (2014)

    Article  ADS  Google Scholar 

  45. D. Helbing, Eur. Phys. J. Special Topics 214, 5 (2012)

    Article  ADS  Google Scholar 

  46. B. Leiner, et al., ACM SIGCOMM Computer Comm. Rev. 39, 22 (2009)

    Article  Google Scholar 

  47. J. van den Hoven, et al., Eur. Phys. J. Special Topics 214, 153 (2012)

    Article  ADS  Google Scholar 

  48. D. Helbing, Nature 497, 51 (2013)

    Article  ADS  Google Scholar 

  49. L. Atzori, et al., Computer Networks 54, 2787 (2010)

    Article  MATH  Google Scholar 

  50. M. Becker, et al., Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing Adjunct Publication (ACM, USA 2013), p. 1175

  51. F. Giannotti, et al., Eur. Phys. J. Special Topics 214, 49 (2012)

    Article  ADS  Google Scholar 

  52. S. Bishop, Eur. Phys. J. Special Topics 214, 1 (2012)

    Article  ADS  Google Scholar 

  53. H.-J. Appelrath, et al., Business Inf. Syst. Eng. 4, 1 (2012)

    Article  Google Scholar 

  54. M. Ajmone-Marsan, et al. Eur. Phys. J. Special Topics 214, 547 (2012)

    Article  ADS  Google Scholar 

  55. Y. Xu, et al., IEEE Trans. Wireless Comm. 12, 3360 (2013)

    Article  Google Scholar 

  56. S. Galli, et al., Proc. IEEE 99, 998 (2011)

    Article  Google Scholar 

  57. V. Gungor, et al., IEEE Trans. Ind. Inf. 9, 28 (2013)

    Article  Google Scholar 

  58. Y. Yan, et al., IEEE Comm. Surveys Tutorials 15, 5 (2013)

    Article  Google Scholar 

  59. M. Jacobson, Energy Env. Sci. 2, 148 (2009)

    Article  Google Scholar 

  60. O. Zehner, Green illusions: The dirty secrets of clean energy and the future of environmentalism. (University of Nebraska Press, USA, 2012)

  61. B. Parida, et al., Renewable Sust. Energy Rev. 15, 1625 (2011)

    Article  Google Scholar 

  62. R. Nelson, Semiconductor Sci. Technol. 18, S141 (2003)

    Article  ADS  Google Scholar 

  63. P. Carlin, et al., Wind Energy 6, 129 (2003)

    Article  ADS  Google Scholar 

  64. J. Carrasco, et al., IEEE Trans. Ind. Electr. 53, 1002 (2006)

    Article  MathSciNet  Google Scholar 

  65. J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. E 71, 036151 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  66. L. Xiangjun, et al., IEEE Trans. Sust. Energy 4, 464 (2013)

    Article  Google Scholar 

  67. Y. Riffonneau, et al., IEEE Trans. Sust. Energy 2, 309 (2011)

    Article  Google Scholar 

  68. H. Bevrani, et al., IET Renewable Power Generation 4, 438 (2010)

    Article  Google Scholar 

  69. D. Wu, et al., IEEE Trans. Power Syst. 26, 738 (2011)

    Article  Google Scholar 

  70. D. Wu, et al., IEEE Trans. Smart Grid 3, 368 (2012)

    Article  Google Scholar 

  71. A. Hilshey, et al., IEEE Trans. Smart Grid 4, 368 (2013) 905 (2013)

    Article  Google Scholar 

  72. J. Marshall, et al., Elect. Power Syst. Res. 97, 76 (2013)

    Article  Google Scholar 

  73. K. Clement-Nyns, et al., IEEE Trans. Power Syst. 25, 371 (2010)

    Article  Google Scholar 

  74. S. Bae, A. Kwasinski., IEEE Trans. Smart Grid 3, 394 (2012)

    Article  Google Scholar 

  75. M. Kintner-Meyer, et al., Impacts assessment of plug-in hybrid vehicles on electric utilities and regional US power grids (Technical analysis Pacific Northwest National Laboratory, USA, 2007)

  76. D. MacKay, Sustainable Energy-without the hot air (UIT Cambridge, UK, 2008)

  77. Smart Grid System Report (U.S. Department of Energy, USA, 2009)

  78. V. Giordano, et al., Smart Grid projects in Europe: lessons learned and current developments (European Commission, Joint Research Centre, Institute for Energy, Luxembourg, 2011)

  79. Redes Eletricas Inteligentes (Centro de Gestão e Estudos Estratégicos, Brazil, 2012)

  80. S. Wasserman, Social network analysis: Methods and applications (Cambridge University Press, UK, 1994)

  81. S. Milgram, Psychol. Today 2, 60 (1967)

    Google Scholar 

  82. M. Newman, Networks: an introduction (Oxford University Press, UK, 2009)

  83. E. Rogers, Diffusion of innovations (Simon and Schuster, USA, 2010)

  84. A-H. Mohsenian-Rad, A. Leon-Garcia, 1, 120 (2010)

  85. A. Conejo, et al., IEEE Trans. Smart Grid 1, 236 (2010)

  86. W. Saad, et al., IEEE Signal Proc. Mag. 29, 86 (2012)

    Article  ADS  Google Scholar 

  87. L. Qian, et al., IEEE J. Sel. Areas Comm. 31, 1268 (2013)

    Article  Google Scholar 

  88. D. Helbing, A. Kirman., Real-World Economics Rev. 64, 23 (2013)

    Google Scholar 

  89. E. Bompard, et al., IEEE Trans. Power Syst. 26, 1231 (2011)

    Article  Google Scholar 

  90. P. Cockshott, et al., Classical Econophysics (Routledge, UK, 2009)

  91. M. Batty, Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals (MIT Press, USA, 2007)

  92. M. Batty, The New Science of Cities (MIT Press, USA, 2013)

  93. L. Bettencourt, Science 340, 1438 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  94. E. Carreno, et al., IEEE Trans. Power Syst. 26, 532 (2011)

    Article  Google Scholar 

  95. J. Melo, et al., IEEE Trans. Power Syst. 27, 1870 (2012)

    Article  Google Scholar 

  96. P. Ribeiro, et al., IEEE Technol. Soc. Maga. 31, 34 (2012)

    Article  Google Scholar 

  97. C. Brummitt, et al., Proc. Nat. Acad. Sci. 110, 12159 (2013)

    Article  ADS  Google Scholar 

  98. P. Nardelli, et al. [ArXiv 1308.3229] (2013)

  99. B. De Vries, Sustainability Science (Cambridge University Press, UK, 2012)

  100. E. Kremers, Modelling and Simulation of Electrical Energy Systems through a Complex Systems Approach using Agent-Based Models (KIT Scientific Publishing, Germany, 2013)

  101. D. Chassin, et al., GridLAB-D: An open-source power systems modelling and simulation environment (Proceedings of IEEE/PES Transmission and Distribution Conference and Exposition, US, 2008)

  102. D. Divenyi, A. Dan, IEEE Trans. Sust. Energy 4, 886 (2013)

    Article  Google Scholar 

  103. Y. Yang, et al., Phys. Rev. Lett. 109, 258701 (2012)

    Article  ADS  Google Scholar 

  104. G.A. Pagani, M. Aiello, Physica A 396, 248 (2014)

    Article  ADS  Google Scholar 

  105. J. Giraldo, E. Mojica-Nava, N. Quijano, Synchronization of Dynamical Networks with a Communication Infrastructure: A Smart Grid Application, 52nd IEEE Conference on Decision and Control, December 10 (2013)

  106. C. Brummitt, et al., Proc. Nat. Acad. Sci. 109, E680 (2012)

    Article  ADS  Google Scholar 

  107. P. Bak, et al., Phys. Rev. A 38, 364 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  108. A. Sole-Ribalta, et al., Phys. Rev. E 88, 032807 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H.J. Nardelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardelli, P., Rubido, N., Wang, C. et al. Models for the modern power grid. Eur. Phys. J. Spec. Top. 223, 2423–2437 (2014). https://doi.org/10.1140/epjst/e2014-02219-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02219-6

Keywords

Navigation