Skip to main content

Advertisement

Log in

Kolmogorov spectrum of renewable wind and solar power fluctuations

The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

With increasing the contribution of renewable energies in power production, the task of reducing dynamic instability in power grids must also be addressed from the generation side, because the power delivered from such sources is spatiotemporally stochastic in nature. Here we characterize the stochastic properties of the wind and solar energy sources by studying their spectrum and multifractal exponents. The computed power spectrum from high frequency time series of solar irradiance and wind power reveals a power-law behaviour with an exponent ∼ 5/3 (Kolmogorov exponent) for the frequency domain 0.001 Hz < f < 0.05 Hz, which means that the power grid is being fed by turbulent-like sources. Our results bring important evidence on the stochastic and turbulent-like behaviour of renewable power production from wind and solar energies, which can cause instability in power grids. Our statistical analysis also provides important information that must be used as a guideline for an optimal design of power grids that operate under intermittent renewable sources of power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)

    Article  ADS  Google Scholar 

  2. M. Reza Rahimi Tabar, M. Anvari, M. Wächter, P. Milan, G. Lohmann, E. Lorenz, D. Heinemann, J. Peinke, Renewable Power from Wind and Solar: Their Resilience and Extreme Events (submitted)

  3. R. Baldick, B. Chowdhury, I. Dobson, Zhaoyang Dong, Bei Gou, D. Hawkins, H. Huang, Manho Joung, D. Kirschen, Fangxing Li, Juan Li, Zuyi Li, Chen-Ching Liu, L. Mili, S. Miller, R. Podmore, K. Schneider, Kai Sun, D. Wang, Zhigang Wu, Pei Zhang, Wenjie Zhang, Xiaoping Zhang: Initial review of methods for cascading failure analysis in electric power transmission systems, IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures, Proc. IEEE Power Eng. (Society General Meeting, Pittsburgh, PA, USA, 2008)

  4. M. Amin, Nature 499, 145 (2013)

    Article  ADS  Google Scholar 

  5. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  6. D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)

    Article  ADS  Google Scholar 

  7. R. Baïle, J.-F. Muzy, Phys. Rev. Lett. 105, 254501 (2010)

    Article  ADS  Google Scholar 

  8. A. Morales, M. Wächter, J. Peinke, Wind Energy 15, 391 (2012)

    Article  ADS  Google Scholar 

  9. F. Boettcher, Ch. Renner, H.-P. Waldl, J. Peinke, Boundary-Layer Meteor. 108, 163 (2003)

    Article  ADS  Google Scholar 

  10. R.B. Govindan, H. Kantz, Eur. Phys. Lett. 68, 184 (2004)

    Article  ADS  Google Scholar 

  11. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook (John, New York, 2001)

  12. B.M. Schulz, M. Schulz, S. Trimper, Phys. Lett. A 87, 291 (2001)

    Google Scholar 

  13. R. Calif, F.G. Schmitt, Y. Huang, Physica A 392, 4106 (2013)

    Article  ADS  Google Scholar 

  14. I. Tchiguirinskaia, D. Schertzer, S. Lovejoy, J.M. Veysseire, Wind Extremes and Scales: Multifractal Insights and Empirical Evidence, Wind energy: proceedings of the Euromech colloquium, edited by J. Peinke, P. Schaumann, and S. Barth (2009), p. 99

  15. I.T. Pedron, J. Phys.: Conf. Ser. 246, 012034 (2010)

    ADS  Google Scholar 

  16. U. Frisch, Turbulence (Cambridge University Press, London, 1995)

  17. E. Hau, Windturbines, Fundamentals, Technologies, Applications, Economics (Springer, Berlin, 2000)

  18. A. Woyte, V.V. Thong, R. Belmans, J. Nijs, IEEE Trans. Energy Conv. 21, 202 (2006)

    Article  Google Scholar 

  19. A. Woyte, R. Belmans, J. Nijs, Solar Energy 81, 195 (2007)

    Article  ADS  Google Scholar 

  20. A. Woyte, R. Belmans, J. Nijs, EURASIP J. Adv. Signal Proc., 80919 (2007)

  21. J. Marcos, L. Marroyo, E. Lorenzo, D. Alvira, E. Izco, Appl. 19, 218 (2011)

    Google Scholar 

  22. J. Marcos, L. Marroyo, E. Lorenzo, D. Alvira, E. Izco, Appl. 19, 505 (2011)

    Google Scholar 

  23. A. Peled, J. Appelbaum, Renewable Energy 59, 30 (2013)

    Article  Google Scholar 

  24. J. Apt, J. Power Sources 169, 369 (2007)

    Article  Google Scholar 

  25. R. Wood, P.R. Field, J. Climate 24, 4800 (2011)

    Article  ADS  Google Scholar 

  26. J.L. Bosch, J. Kleissl, Solar Energy 95, 13 (2013)

    Article  ADS  Google Scholar 

  27. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, L.E. Brus, Nature 383, 802 (1996)

    Article  ADS  Google Scholar 

  28. M. Lukovic, P. Grigolini, J. Chem. Phys. 129, 184102 (2008)

    Article  ADS  Google Scholar 

  29. P.P. Galuzio, S.R. Lopes, R.L. Viana, Phys. Rev. Lett. 105, 055001 (2010)

    Article  ADS  Google Scholar 

  30. R. Friedrich, J. Peinke, M. Sahimi, M.R. Rahimi Tabar, Phys. Rep. 506, 87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Reza Rahimi Tabar or Joachim Peinke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabar, M., Anvari, M., Lohmann, G. et al. Kolmogorov spectrum of renewable wind and solar power fluctuations. Eur. Phys. J. Spec. Top. 223, 2637–2644 (2014). https://doi.org/10.1140/epjst/e2014-02217-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02217-8

Keywords

Navigation