Skip to main content
Log in

Towards a quantitative kinetic theory of polar active matter

  • Regular Article
  • Papers
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A recent kinetic approach for Vicsek-like models of active particles is reviewed. The theory is based on an exact Chapman- Kolmogorov equation in phase space. It can handle discrete time dynamics and “exotic” multi-particle interactions. A nonlocal mean-field theory for the one-particle distribution function is obtained by assuming molecular chaos. The Boltzmann approach of Bertin, et al., Phys. Rev. E 74, 022101 (2006) and J. Phys. A 42, 445001 (2009), is critically assessed and compared to the current approach. In Boltzmann theory, a collision starts when two particles enter each others action spheres and is finished when their distance exceeds the interaction radius. The average duration of such a collision, τ0, is measured for the Vicsek model with continuous time-evolution. If the noise is chosen to be close to the flocking threshold, the average time between collisions is found to be roughly equal to τ0 at low densities. Thus, the continuous-time Vicsek-model near the flocking threshold cannot be accurately described by a Boltzmann equation, even at very small density because collisions take so long that typically other particles join in, rendering Boltzmann’s binary collision assumption invalid. Hydrodynamic equations for the phase space approach are derived by means of a Chapman-Enskog expansion. The equations are compared to the Toner-Tu theory of polar active matter. New terms, absent in the Toner-Tu theory, are highlighted. Convergence problems of Chapman-Enskog and similar gradient expansions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  2. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  3. M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  4. T. Vicsek, et al., Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  5. A. Czirók, H.E. Stanley, T. Vicsek, J. Phys. A 30, 1375 (1997)

    Article  ADS  Google Scholar 

  6. M. Nagy, I. Daruka, T. Vicsek, Physica A 373, 445 (2007)

    Article  ADS  Google Scholar 

  7. T. Ihle, Phys. Rev. E 88, 040303 (2013)

    Article  ADS  Google Scholar 

  8. F. Thüroff, C.A. Weber, E. Frey, Phys. Rev. Lett. 111, 190601 (2013)

    Article  ADS  Google Scholar 

  9. T. Hanke, C.A. Weber, E. Frey, Phys. Rev. E 88, 052309 (2013)

    Article  ADS  Google Scholar 

  10. In principle, f could have, and probably in reality does have, a true nonlocal dependence on the hydrodynamic fields. In practice, f is expanded in spatial gradients of these fields and the expansion is truncated somewhere, forcing the dependence to be local

  11. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  12. For example, the pronounced finite size effects of the transition to collective motion, including the strong system size dependence of steep solitons that show hysteresis and lead to a discontinuous flocking transition, see Ref. [7], have not yet been reproduced by this theory

  13. Additional simulations in the ordered phase show that the likelihood for non-binary interactions becomes even larger compared to the disordered phase with similar parameters

  14. Typical parameters in Ref. [4] are v0 = 0.03, τ = R = 1, ρ0 = 0.4 leading to l D = 1.58, λ = 0.03, and M = 1.257

  15. J. Toner, Phys. Rev. E 86, 031918 (2012)

    Article  ADS  Google Scholar 

  16. D. Hilbert, Bull. Amer. Math. Soc. 8, 437 (1902)

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge, 1970)

  18. A.N. Gorban, I. Karlin, Bull. Amer. Math. Soc. S 0273-0979, 01439-3 (2013)

    Google Scholar 

  19. M. Slemrod, Comp. Math. Appl. 65, 1497 (2013)

    Article  MathSciNet  Google Scholar 

  20. A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982)

  21. I.V. Karlin, A.N. Gorban, Ann. Phys. (Leipzig) 11, 783 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. I.V. Karlin, S.S. Chikatamarla, M. Kooshkbaghi [arXiv:1310.7124v1] (2013)

  23. M. Slemrod, Quart. Appl. Math. 70, 613 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Ihle, Phys. Rev. E 83, 030901 (2011)

    Article  ADS  Google Scholar 

  25. Y.-L. Chou, R. Wolfe, T. Ihle, Phys. Rev. E 86, 021120 (2012)

    Article  ADS  Google Scholar 

  26. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    Article  ADS  Google Scholar 

  27. G. Gompper, et al., Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  28. T. Ihle, Phys. Chem. Chem. Phys. 11, 9667 (2009)

    Article  Google Scholar 

  29. C.M. Pooley, J.M. Yeomans, J. Phys. Chem. B 109, 6505 (2005)

    Article  Google Scholar 

  30. T. Ihle, D.M. Kroll, Phys. Rev. E 67, 066705 (2003)

    Article  ADS  Google Scholar 

  31. T. Ihle, E. Tüzel, D.M. Kroll, Phys. Rev. E 72, 046707 (2005)

    Article  ADS  Google Scholar 

  32. E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006)

    Article  ADS  Google Scholar 

  33. E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)

    Article  ADS  Google Scholar 

  34. R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 15, 085014 (2013)

    Article  ADS  Google Scholar 

  35. G. Baglietto, E.V. Albano, Phys. Rev. E 78, 021125 (2008)

    Article  ADS  Google Scholar 

  36. G. Baglietto, E.V. Albano, Phys. Rev. E 80, 050103 (2009)

    Article  ADS  Google Scholar 

  37. N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics (Gostekhizdat, Moscow, 1946); English translation in Studies in Statistical Physics, Vol. 1, edited by J. de Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1962), p. 1

  38. A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938)

    MATH  Google Scholar 

  39. M. Aldana, H. Larralde, B. Vazquez, Int. J. Mod. Phys. B 23, 3661 (2009)

    Article  MATH  ADS  Google Scholar 

  40. F. Peruani, L. Schimansky-Geier, M. Bär, Eur. Phys. J. Special Topics 191, 173 (2010)

    Article  ADS  Google Scholar 

  41. F. Peruani, M. Bär, New J. Phys. 15, 065009 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. F. Peruani, et al., J. Phys. Conf. Ser. 297, 012014 (2011)

    Article  ADS  Google Scholar 

  43. P refers to an ensemble of independent Vicsek systems which are initialized at time t = 0 with some inital probability density P0. This inital density is assumed to be symmetric aginst permuting particle indices

  44. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  45. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  46. There is two interpretations of the distribution function f [47]. It can be seen as the ensemble average of the microscopic particle density but it is also equal to N times the probability density to find any particle in a phase space volume around (x,θ). Therefore, Eq. (9) can alternatively be derived by marginalization, that is by simply integrating out all particles except particle 1

  47. M. Bixon, R. Zwanzig, Phys. Rev. 187, 267 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Gross, R. Adhikari, M.E. Cates, F. Varnik, Phys. Rev. E 82, 056714 (2010)

    Article  ADS  Google Scholar 

  49. G. Kaehler, A.J. Wagner, Phys. Rev. E 87, 063310 (2013)

    Article  ADS  Google Scholar 

  50. Y.L. Chou, T. Ihle (in preparation)

  51. F. Ginelli, H. Chaté, Phys. Rev. Lett. 105, 168103 (2010)

    Article  ADS  Google Scholar 

  52. A. Peshkov, S. Ngo, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 098101 (2012)

    Article  ADS  Google Scholar 

  53. H.J. Bussemaker, A. Deutsch, E. Geigant, Phys. Rev. Lett. 78, 5018 (1997)

    Article  ADS  Google Scholar 

  54. P. Romanczuk, L. Schimansky-Geier, Ecol. Complex. 10, 83 (2012)

    Article  Google Scholar 

  55. S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)

    Article  ADS  Google Scholar 

  56. G. McNamara, B. Alder, Physica A 194, 218 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. T. Ihle, D.M. Kroll, Comp. Phys. Comm. 129, 1 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)

    Article  ADS  Google Scholar 

  59. E. Bertin, et al. [aXiv:1305.0772v1] (2013)

  60. A. Peshkov, “Boltzmann-Ginzburg-Landau approach to simple models of active matter”, Ph.D. thesis, Université Pierre et Marie Curie, Paris, September, 2013

  61. S. Mishra, et al., Phys. Rev. E 86, 011901 (2012)

    Article  ADS  Google Scholar 

  62. E. Bertin, et al., New J. Phys. 15, 085032 (2013)

    Article  ADS  Google Scholar 

  63. A. Solon, J. Tailleur, Phys. Rev. Lett. 111, 078101 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ihle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihle, T. Towards a quantitative kinetic theory of polar active matter. Eur. Phys. J. Spec. Top. 223, 1293–1314 (2014). https://doi.org/10.1140/epjst/e2014-02192-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02192-0

Keywords

Navigation