Skip to main content
Log in

Noise can reduce disorder in chaotic dynamics

  • Regular Article
  • Other Applications for Communication
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We evoke the idea of representation of the chaotic attractor by the set of unstable periodic orbits and disclose a novel noise-induced ordering phenomenon. For long unstable periodic orbits forming the strange attractor the weights (or natural measure) is generally highly inhomogeneous over the set, either diminishing or enhancing the contribution of these orbits into system dynamics. We show analytically and numerically a weak noise to reduce this inhomogeneity and, additionally to obvious perturbing impact, make a regularizing influence on the chaotic dynamics. This universal effect is rooted into the nature of deterministic chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  2. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  3. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. V.S. Anishchenko, in Dynamical Chaos – Models and Experiments: Appearance Routes and Structure of Chaos in Simple Dynamical Systems, edited by L.O. Chua (World Scientific, 1995), p. 302

  5. Ch. Zhou, J. Kurths, I.Z. Kiss, J.L. Hudson, Phys. Rev. Lett. 89, 014101 (2002)

    Article  ADS  Google Scholar 

  6. J.N. Teramae, D. Tanaka, Phys. Rev. Lett. 93, 204103 (2004)

    Article  ADS  Google Scholar 

  7. D.S. Goldobin, A.S. Pikovsky, Physica A 351, 126 (2005)

    Article  ADS  Google Scholar 

  8. D.S. Goldobin, A. Pikovsky, Phys. Rev. E 71, 045201(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.S. Goldobin, J.-N. Teramae, H. Nakao, G.B. Ermentrout, Phys. Rev. Lett. 105, 154101 (2010)

    Article  ADS  Google Scholar 

  10. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  11. J.D. Maynard, Rev. Mod. Phys. 73, 401 (2001)

    Article  ADS  Google Scholar 

  12. D.S. Goldobin, E.V. Shklyaeva, J. Stat. Mech.: Theory Exp., P01009 (2009)

  13. D.S. Goldobin, E.V. Shklyaeva, J. Stat. Mech.: Theory Exp., P09027 (2013)

  14. E.G. Altmann, A. Endler, Phys. Rev. Lett. 105, 244102 (2010)

    Article  ADS  Google Scholar 

  15. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  16. D.V. Lyubimov, M.A. Zaks, Physica 9D, 52 (1983)

    ADS  MathSciNet  Google Scholar 

  17. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. A 37, 1711 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Ott, Chaos in Dynamical Systems (University Press, Cambridge, 1993)

  19. B. Eckhardt, G. Ott, Z. Phys. B 93, 259 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.A. Zaks, D.S. Goldobin, Phys. Rev. E 81, 018201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Cvitanovic, C.P. Dettmann, R. Mainieri, G. Vattay, J. Stat. Phys. 93(3/4), 981 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. C.P. Dettmann, T.B. Howard, Physica D 238, 2404 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. D. Lippolis, P. Cvitanovic, Phys. Rev. Lett. 104, 014101 (2010)

    Article  ADS  Google Scholar 

  24. P. Gaspard, J. Stat. Phys. 106(1/2), 57 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. E.G. Altmann, J.C. Leitao, J.V. Lopes, Chaos 22, 026114 (2012)

    Article  ADS  Google Scholar 

  26. P. Cvitanovic, Chaos: Classical and Quantum, http://chaosbook.org, ver. 14, 2012

  27. R. Bowen, On Axiom A Diffeomorphisms, CBMS Regional Conference Series in Mathematics, Vol. 35 (American Mathematical Society, Providence, 1978)

  28. A.N. Oraevskii, Sov. J. Quantum Electron. 11, 71 (1981)

    Article  ADS  Google Scholar 

  29. J.L. Kaplan, J. A. Yorke, Commun. Math. Phys. 67, 93 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. C. Sparrow, The Lorenz equations: Bifurcations, chaos, and strange attractors (Springer, 1982)

  31. A.S. Pikovsky, M. Rosenblum, J. Kurths, Synchronization–A Unified Approach to Nonlinear Science (Cambridge University Press, Cambridge, UK, 2001)

  32. D. Goldobin, M. Rosenblum, A. Pikovsky, Phys. Rev. E 67, 061119 (2003)

    Article  ADS  Google Scholar 

  33. D.S. Goldobin, Phys. Rev. E 78, 060104(R) (2008)

    Article  ADS  Google Scholar 

  34. P. Reimann, C. van den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Phys. Rev. Lett. 87, 010602 (2001)

    Article  ADS  Google Scholar 

  35. S. Boccaletti, E. Allaria, R. Meucci, Phys. Rev. E 69, 066211 (2004)

    Article  ADS  Google Scholar 

  36. S. Banerjee, L. Rondoni, S. Mukhopadhyay, A.P. Misra, Opt. Commun. 284(9), 2278 (2011)

    Article  ADS  Google Scholar 

  37. S. Banerjee, L. Rondoni, S. Mukhopadhyay, Opt. Commun. 284(19), 4623 (2011)

    Article  ADS  Google Scholar 

  38. M. Montminy, Annu. Rev. Biochem. 66, 807 (1997)

    Article  Google Scholar 

  39. D. Bell-Pedersen, et al., Nat. Rev. Genet. 6, 544 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis S. Goldobin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldobin, D. Noise can reduce disorder in chaotic dynamics. Eur. Phys. J. Spec. Top. 223, 1699–1709 (2014). https://doi.org/10.1140/epjst/e2014-02179-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02179-9

Keywords

Navigation