Skip to main content

Advertisement

Log in

The role of continuous and discrete water structures in protein function

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Proteins have evolved to perform numerous roles as specific catalysts and nano-machines. Some of the mechanisms exploited by evolution are clear. Hydrophobicity drives the stabilization energy of folding, charges mediate long-range interactions and facilitate catalysis, and specific geometries and hydrogen bonding patterns facilitate molecular recognition and catalysis. In this work, we examine the energy landscape of protein dynamics in terms of the continuous and discrete water structures that control protein dynamics. We observe that the internal structures at the active site of proteins are constantly shaped by strong interactions with hydration shell and bulk water motions. By describing the energy landscape of proteins in terms of its three component motions; conformational, hydration and protonation, and electronic structure, it is possible to systematically understand protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, F.G. Parak, PNAS USA 99, 16047 (2002)

    Article  ADS  Google Scholar 

  2. V. Lubchenko, P.G. Wolynes, H. Frauenfelder, J. Phys. Chem. B 109, 7488 (2005)

    Article  Google Scholar 

  3. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, PNAS USA 101, 14408 (2004)

    Article  ADS  Google Scholar 

  4. B.H. McMahon, B.P. Stojkovic, P.J. Hay, R.L. Martin, A.E. Garcia, J. Chem. Phys. 113, 6831 (2000)

    Article  ADS  Google Scholar 

  5. T. Kleinert, W. Doster, H. Leyser, W. Petry, V. Schwarz, M. Settles, Biochemistry 37, 717 (1998)

    Article  Google Scholar 

  6. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. H. Frauenfelder, P.W. Fenimore, G. Chen, B.H. McMahon, PNAS USA 103, 15469 (2006)

    Article  ADS  Google Scholar 

  8. N. Agmon, J.J. Hopfield, J. Chem. Phys. 78, 6947 (1983)

    Article  ADS  Google Scholar 

  9. N. Agmon, J.J. Hopfield, J. Chem. Phys. 79, 2042 (1983)

    Article  ADS  Google Scholar 

  10. J.N. Onuchic, P.G. Wolynes, Z. Luthey-Schulten, N.D. Socci, PNAS USA 92, 3626 (1995)

    Article  ADS  Google Scholar 

  11. C.L. Brooks, J.N. Onuchic, D.J. Wales, Science 293, 5530 (2001)

    Article  Google Scholar 

  12. R.B. Best, G. Hummer, W.A. Eaton, Proc Nat. Acad. Sci. USA 110, 17874 (2013)

    Article  Google Scholar 

  13. M.S. Cheung, A.E. Garcia, J.N. Onuchic, PNAS USA 99, 685 (2002)

    Article  ADS  Google Scholar 

  14. S. Tripathi, J.J. Portman, PNAS USA 106, 2104 (2009)

    Article  ADS  Google Scholar 

  15. S. Tripathi, J.J. Portman, J. Chem. Phys. 135, 075104 (2011)

    Article  Google Scholar 

  16. W. Zheng, N.P. Schafer, P.G. Wolynes, PNAS USA 110, 20515 (2013)

    Article  ADS  Google Scholar 

  17. P.C. Whitford, K.Y. Sanbonmatsu, J.N. Onuchic, Rep. Prog. Phys. 75, 076601 (2011)

    Article  ADS  Google Scholar 

  18. C. Tanford, J.G. Kirkwood, J. Am. Chem. Soc. 79, 5333 (1957)

    Article  Google Scholar 

  19. A. Warshel, P.K. Sharma, M. Kato, W.W. Parson, BBA 1764, 1647 (2006)

    Google Scholar 

  20. B. Honig, A. Nicholls, Science 268, 1144 (1995)

    Article  ADS  Google Scholar 

  21. P. Jungwirth, B. Winter, Ann. Rev. Phys. Chem. 59, 343 (2008)

    Article  ADS  Google Scholar 

  22. A.G. Cherstvy, Phys. Chem. Chem. Phys. 13, 9942 (2011)

    Article  Google Scholar 

  23. F. Despa, A. Fernandez, R.S. Berry, Phys. Rev. Lett. 93, 228104 (2004)

    Article  ADS  Google Scholar 

  24. A. Fernandez, Phys. Rev. Lett. 108, 188102 (2012)

    Article  ADS  Google Scholar 

  25. A. Kannt, R.D. Lancaster, H. Michel, Biophys. J. 74, 708 (1998)

    Article  ADS  Google Scholar 

  26. V.R.I. Kaila, M.I. Verkhovsky, M. Wikstrom, Chem. Rev. 110, 7062 (2010)

    Article  Google Scholar 

  27. M.R. Gunner, B. Honig, PNAS USA 88, 9151 (1991)

    Article  ADS  Google Scholar 

  28. M.H.V. Huynh, T.J. Meyer, Chem. Rev. 107, 5004 (2007)

    Article  Google Scholar 

  29. P. Dimroth, H. Wang, M. Grabe, G. Oster, PNAS USA 96, 4924 (1999)

    Article  ADS  Google Scholar 

  30. B.E. Cohen, T.B. McAnaney, E.S. Park, Y.N. Jan, S.G. Boxer, L.Y. Jan, Science 296, 1700 (2002)

    Article  ADS  Google Scholar 

  31. T.A. Jackson, M. Lim, P.A. Anfinrud, Chem. Phys. 180, 131 (1994)

    Article  ADS  Google Scholar 

  32. K. Nienhaus, D.C. Lamb, P. Deng, G.U. Nienhaus, BioPhys. J. 82, 1059 (2002)

    Article  Google Scholar 

  33. B.H. McMahon, J.D. Muller, C.A. Wraight, G.U. Nienhaus, Biophys. J. 74, 2567 (1998)

    Article  ADS  Google Scholar 

  34. M. Malferrari, F. Francia, G. Venturoli, Biochim. Biophys. Acta 1827, 328 (2013)

    Article  Google Scholar 

  35. J.R. Huck, G.A. Noyel, L.J. Jorat, IEEE Trans. Elect. Insul. 23, 627 (1988)

    Article  Google Scholar 

  36. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin, 2003)

  37. Y. Feldman, I. Ermolina, Y. Hayashi, IEEE Trans. Dielec. Elec. Insul. 10, 728 (2003)

    Article  Google Scholar 

  38. H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D. Young, PNAS USA 106, 5129 (2009)

    Article  ADS  Google Scholar 

  39. A. Kent, A.K. Jha, J.E. Fitzgerald, K.F. Freed, J. Phys. Chem. 112, 6175 (2008)

    Article  Google Scholar 

  40. A.A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, R.B. Gennis, PNAS USA 94, 9085 (1997)

    Article  ADS  Google Scholar 

  41. M. Vidakovic, S.G. Sligar, H. Li, T.L. Poulos, Biochemistry 37, 9211 (1998)

    Article  Google Scholar 

  42. P.M. Petrone, A.E. Garcia, J. Mol. Biol. 336, 419 (2004)

    Article  Google Scholar 

  43. Z. Li, T. Lazaridis, Phys. Chem. Chem. Phys. 9, 573 (2007)

    Article  Google Scholar 

  44. M.S. Cheung, A.E. Garcia, J.N. Onuchic, PNAS USA 99, 685 (2002)

    Article  ADS  Google Scholar 

  45. A.J. Patel, P. Varilly, S.N. Jamadagni, M.F. Hagen, D. Chandler, S. Garde, J. Phys. Chem. B 116, 2498 (2012)

    Article  Google Scholar 

  46. K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570 (1999)

    Article  Google Scholar 

  47. Y. Miyazaki, T. Matsuo, H. Suga, Chem. Phys. Lett. 213, 303 (1993)

    Article  ADS  Google Scholar 

  48. J. Gomez, V.J. Hilser, D. Xie, E. Freire, Proteins: Struct. Funct. Gen. 22, 404 (1995)

    Article  Google Scholar 

  49. J.D. Muller, B.H. McMahon, E.Y.T. Chien, S.G. Sligar, G.U. Nienhaus, Biophys. J. 77, 1036 (1999)

    Article  Google Scholar 

  50. H. Ishikawa, K. Kwak, J.K. Chung, S. Kim, M.D. Fayer, PNAS USA 105, 8619 (2008)

    Article  ADS  Google Scholar 

  51. J. Vojtechovsky, K. Chu, J. Berendzen, R.M. Sweet, I. Schlichting, Biophys. J. 77, 2153 (1999)

    Article  Google Scholar 

  52. R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsalus, Biochem. 14, 5355 (1974)

    Article  Google Scholar 

  53. K. Chu, J. Vojtechovsky, B.H. McMahon, R.M. Sweet, J. Berendzen, I. Schlichting, Nature 403, 921 (2000)

    Article  ADS  Google Scholar 

  54. F. Schotte, M. Lim, T.A. Jackson, A.V. Smirnov, J. Soman, J.S. Olson, G.N. Phillips Jr., M. Wulff, P.A. Anfinrud, Science 300, 1944 (2003)

    Article  ADS  Google Scholar 

  55. F. Schotte, H.S. Cho, J. Soman, M. Wulff, J.S. Olson, P.A. Anfinrud, Chem. Phys. 422, 98 (2013)

    Article  ADS  Google Scholar 

  56. W.S. Caughey, H. Shimada, M.G. Choc, M.P. Tucker, PNAS USA 78, 2903 (1981)

    Article  ADS  Google Scholar 

  57. D.V. Yang, J. Appl. Phys. 45, 3023 (1974)

    Article  ADS  Google Scholar 

  58. J. Berendzen, D. Braunstein, PNAS USA 87, 1 (1990)

    Article  ADS  Google Scholar 

  59. H. Frauenfelder, S.G. Sligar, P.G. Wolynes, Science 254, 1598 (1991)

    Article  ADS  Google Scholar 

  60. Y. Abadan, E.Y.T. Chien, K. Chu, C.D. Eng, G.U. Nienhaus, S.G. Sligar, Biophys. J. 68, 2497 (1995)

    Article  ADS  Google Scholar 

  61. F. Yang, G.N. Phillips Jr., J. Mol. Biol. 256, 762 (1996)

    Article  Google Scholar 

  62. G. Henkelman, M.X. LaBute, C.S. Tung, P.W. Fenimore, B.H. McMahon, PNAS USA 102, 15347 (2005)

    Article  ADS  Google Scholar 

  63. P.W. Fenimore, H. Frauenfelder, S. Magaz, B.H. McMahon, F. Mezei, F. Migliardo, R.D. Young, I. Stroe, Chem. Phys. 424, 2 (2013)

    Article  ADS  Google Scholar 

  64. H. Frauenfelder, B.H. McMahon, R.H. Austin, K. Chu, J.T. Groves, PNAS USA 98, 2370 (2001)

    Article  ADS  Google Scholar 

  65. A. Ansari, J. Berendzen, S.F. Bowne, H. Frauenfelder, M.K. Hong, I.E. Iben, T.B. Sauke, P.J. Steinbach, R.D. Young, PNAS USA 82, 5000 (1985)

    Article  ADS  Google Scholar 

  66. J. Monod, J. Wyman, J.P. Changeux, J. Mol. Biol. 12, 88 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, B., Frauenfelder, H. & Fenimore, P. The role of continuous and discrete water structures in protein function. Eur. Phys. J. Spec. Top. 223, 915–926 (2014). https://doi.org/10.1140/epjst/e2014-02125-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02125-y

Keywords

Navigation