Skip to main content
Log in

Investigation of Al-Cu-Ni alloy solidification: thermodynamics, experiments and phase-field modeling

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The investigation of solidification in ternary Al-Cu-Ni alloys is carried out by means of experiments and phase-field modeling. For three alloys in the Al-rich corner of the phase diagram differential thermal analysis (DTA) is performed. Then the alloys were analyzed using scanning electron microscopy with energy dispersive X-ray microanalysis. For the understanding of the general features of the alloy solidification quantitative phase-field simulations are carried out additionally to the theoretical Scheil calculation. It is found that many experimental DTA signals and the microstructure parts cannot be explained by simple Scheil calculation. We apply the multi-phase-field model previously developed for the simulation of peritectic reaction and extended it to three components and four-phases reactions. The main advantage of this model is the application of the equilibrium parameters evaluated from the refined free energies of the phases. It is shown that the simulated microstructure is comparable to the experimental one for two investigated alloys. The final phase fractions in the modeling correspond to the theoretical predictions of Scheil calculation but the time evolution of fractions is more complicated. In particular the kinetics (relation between tangential and normal growth velocities) of the peritectic-like reaction in ternary Al-Cu-Ni alloys shows differences compared to the peritectic reaction in binary Al-Ni alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Kundin, H.-L. Chen, H. Emmerich, R. Schmid-Fetzer, Eur. Phys. J. Plus 126, 96 (2011)

    Article  Google Scholar 

  2. I. Steinbach, F. Pezolla, Physica D 154, 468 (1999)

    MATH  Google Scholar 

  3. B. Nestler, A.A. Wheeler, Physica D 138, 114 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. M. Apel, B. Boettger, H.-J. Diepers, I. Steinbach, J. Cryst. Growth 237, 154 (2002)

    Article  ADS  Google Scholar 

  5. S.G. Kim, W.T. Kim, T. Suzuki, M. Ode, J. Crist. Growth 261, 135 (2004)

    Article  ADS  Google Scholar 

  6. U. Hecht, L. Grnsy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre, S. Rex, Mater. Sci. Eng. Reports 1/2 46, 1 (2004)

    Article  Google Scholar 

  7. B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005)

    Article  ADS  Google Scholar 

  8. R. Folch, M. Plapp, Phys. Rev. E 72, 011602 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Kundin, R. Siquieri, Physica D 240, 459 (2011)

    Article  ADS  MATH  Google Scholar 

  10. J. Kundin, R. Siquieri, H. Emmerich, Physica D 243, 116 (2013)

    Article  ADS  MATH  Google Scholar 

  11. E. Pogorelov, J. Kundin, H. Emmerich [arXiv 1304.6549] (2013)

  12. E. Scheil, Z. Metallkde 34, 70 (1942)

    Google Scholar 

  13. G.H. Gulliver, J. Inst. Metals 9, 120 (1913)

    Google Scholar 

  14. M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, New York, 2011)

  15. W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328 (2009)

    Article  Google Scholar 

  16. J.-O. Andersson, T. Helander, L. Hglund, P. Shi, B. Sundman, Calphad 26, 273 (2002)

    Article  Google Scholar 

  17. C.W. Bale, E. Blisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melanon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33 295 (2009)

    Article  Google Scholar 

  18. A. Prince, K.C. Hari Kumar, Aluminium – Copper – Nickel, edited by G. Effenberg, S. Ilyenko, Landolt-Brnstein – Group IV Physical Chemistry 11A2, 104 (2005)

  19. N. Saunders, Al-Cu, edited by I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507–Thermochemical database for light metal alloys. Luxembourg: Office for Official Publ. Eur. Comm. 2, 28 (1998)

  20. N. Dupin, I. Ansara, B. Sundman, Calphad 25, 279 (2001)

    Article  Google Scholar 

  21. S. An Mey, Cu-Ni, edited by I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507–Thermochemical database for light metal alloys. Luxembourg: Office for Official Publ. Eur. Comm. 2, 175 (1998)

  22. E.A. Brener, G. Boussinot, Phys. Rev. E 86, 060601 (2012)

    Article  ADS  Google Scholar 

  23. G. Boussinot, E.A. Brener, Phys. Rev. E 88, 022406 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kundin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundin, J., Wang, P., Emmerich, H. et al. Investigation of Al-Cu-Ni alloy solidification: thermodynamics, experiments and phase-field modeling. Eur. Phys. J. Spec. Top. 223, 567–590 (2014). https://doi.org/10.1140/epjst/e2014-02110-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02110-6

Keywords

Navigation