Skip to main content
Log in

Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schleip, D.M. Herlach, B. Feuerbacher, Europhys. Lett. 11, 751 (1990)

    Article  ADS  Google Scholar 

  2. D.M. Herlach, B. Feuerbacher, E. Schleip, Mat. Sci. Eng. A 133, 795 (1990)

    Article  Google Scholar 

  3. K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mat. Sci. Eng. A 254, 99 (1998)

    Article  Google Scholar 

  4. B. Drevet, K. Landry, P. Vikner, N. Eustathopoulos, Scr. Mater. 35, 1265 (N1996)

    Article  Google Scholar 

  5. S.K. Rhee, J. Am. Ceram. Soc. 55, 300 (1972)

    Article  Google Scholar 

  6. P. Shen, H. Fujii, T. Matsumoto, K. Nogi, Scripta Mater. 48, 779 (2003)

    Article  Google Scholar 

  7. P. Shen, H. Fujii, T. Matsumoto, K. Nogi, Acta Mater. 51, 4897 (2003)

    Article  Google Scholar 

  8. P. Shen, H. Fujii, T. Matsumoto, K. Nogi, J. Mat. Sci. 40, 2329 (2005)

    Article  ADS  Google Scholar 

  9. A. Glinter, G. Mendoza-Suarez, R.A.L. Drew, Mat. Sci. Eng. A 495, 147 (2008)

    Article  Google Scholar 

  10. J. Schmitz, Untersuchung der Anisotropie im Benetzungsverhalten flüssiger Al-Cu Legierungen auf einkristallinen Al2O3 Substraten, Ph.D. thesis, RWTH – Aachen, 2011

  11. N. Eusthatopoulos, M.G. Nicolas, B. Drevet, Wettability at High Temperatures, ed R.W. Cahn, Materials Series, Vol. 3 (Pergamon, Elsevier Science Ltd., Amsterdam, 1999)

  12. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mat. Rev. 38, 273 (1993)

    Article  Google Scholar 

  13. M. Shimoji, Liquid Metals an Introduction to the Physics and Chemistry of Metals in the Liquid State (London: Academic Press, 1977)

  14. D.M. Herlach, I. Egry, P. Baeri, F. Spaepen (eds.), Undercooled Metallic Melts: Properties, Solidification and Metastable Phases, reprinted from Mat. Sci. Eng. (Elsevier, Amsterdam, 1994)

  15. J. Brillo, G. Lohfer, F. Schmidt-Hohagen, S. Schneider, I. Egry, J. Mat. Prod. Tech. 16, 247 (2006)

    Google Scholar 

  16. S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 29, 17 (1990)

    Google Scholar 

  17. J. Brillo, I. Egry, I. Ho, Int. J. Thermophys. 27, 494 (2006)

    Article  ADS  Google Scholar 

  18. L. Rayleigh, Proc. Roy. Soc. 29, 71 (1879)

    Article  Google Scholar 

  19. D.L. Cummings, D.A. Blackburn, J. Fluid Mech. 224, 395 (1991)

    Article  ADS  MATH  Google Scholar 

  20. J. Schmitz, J. Brillo, I. Egry, J Mater Sci. 45, 2144 (2010)

    Article  ADS  Google Scholar 

  21. I. Egry, J. Brillo, D. Holland-Moritz, Y. Plevachuk, Mat. Sci. Eng A. 495, 14 (2008)

    Article  Google Scholar 

  22. J.A.V. Butler, Proc. Roy. Soc. A 135, 348 (1932)

    Article  ADS  MATH  Google Scholar 

  23. T. Tanaka, T. Iida, Steel Res. 65, 21 (1994)

    Google Scholar 

  24. T. Tanaka, K. Hack, T. Iida, S. Hara, Z. Metallkd. 87, 380 (1996)

    Google Scholar 

  25. C. Lüdecke, D. Lüdecke, Thermodynamik (Springer, Heidelberg, 2000), p. 506

  26. V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, J. Alloys Comp. 385, 133 (2004)

    Google Scholar 

  27. N. Saunders, Al-Cu System COST 507 – Thermochemical Database for Light Metal Alloys, Vol. 2, edited by I. Ansara et al. (European Communities, Luxembourg, 1998), p. 28

  28. P. Laty, J.C. Joud, P. Desre, Surf. Sci. 69, 508 (1977)

    Article  ADS  Google Scholar 

  29. W.N. Eremenko, W.I. Nichenko, J.W. Naidich, Izw. Akad. Nauk 3, 150 (1961)

    Google Scholar 

  30. P. Laty, J.C. Joud, P. Desre, Surf. Sci. 104, 105 (1981)

    Article  ADS  Google Scholar 

  31. K. Kitayama, A. Glaeser, J. Am. Ceram. Soc. 85, 611 (2002)

    Article  Google Scholar 

  32. H. Suzuki, H. Matsubara, J. Kishino, T. Kondoh, J. Ceram. Soc. Jpn. 106, 1215 (1998)

    Article  Google Scholar 

  33. D. Chatain, Annu. Rev. Mater. Res. 38, 45 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, J., Brillo, J. & Egry, I. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface. Eur. Phys. J. Spec. Top. 223, 469–479 (2014). https://doi.org/10.1140/epjst/e2014-02103-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02103-5

Keywords

Navigation