Skip to main content

Advertisement

Log in

Bistable sensors based on broken symmetry phenomena: The residence time difference vs. the second harmonic method

  • Regular Article
  • Applications in Chemistry, Physics and Engineering
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A periodically driven noisy bistable system can be used as a sensor of a dc target signal. In the presence of the dc signal the symmetry of the potential energy function that underpins the sensor dynamics can be broken, leading to even harmonics of the driving frequency in the power spectrum. Both the power of the second harmonic and the mean residence time difference can be used for an estimation of the dc signal. In this paper we introduce a method for the power spectrum estimation from the experimental time series. This method can be considered to be an alternative to methods based on the Fourier transform. The presented method is faster for computation than the Fast Fourier Transform, and it allow us to estimate the power contained in peaks (or features) without their mixture with the power spectrum background. Using this method we compute the power of the second harmonic in the response power spectrum and compare the accuracy of the second harmonic method and the mean residence time difference (RTD) via the Shannon mutual information. We find that the RTD, generally, yields better performance in bistable noisy sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. See e.g. P. Ripka, Magnetic Sensors and Magnetometers (Artech, Boston, 2001)

  2. A.R. Bulsara, et al., Phys. Rev. E 67, 016120 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  3. B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)

    Article  ADS  Google Scholar 

  4. R. Benzi, A. Sutera, A. Vilpiani, J. Phys. A 14, L453 (1981)

    Article  ADS  Google Scholar 

  5. C. Nicolis, J. Stat. Phys. 70, 3 (1993)

    Article  ADS  MATH  Google Scholar 

  6. S. Fauve, F. Heslot, Phys. Lett. A 97, 5 (1983)

    Article  ADS  Google Scholar 

  7. R. Rouse, S. Han, J.E. Lukens, Appl. Phys. Lett. 66, 108 (1995)

    Article  ADS  Google Scholar 

  8. A. Grigorenko, P. Nikitin,IEEE Trans. Magn. 31, 2491 (1995)

    Article  ADS  Google Scholar 

  9. A. Grigorenko, P. Nikitin, A. Slavin, P. Zhou, J. Appl. Phys. 76, 6335 (1994)

    Article  ADS  Google Scholar 

  10. R.L. Badzey, P. Mohanty, Nature 437, 995 (2005)

    Article  ADS  Google Scholar 

  11. S.M. Bezrukov, I. Vodyanoy, Nature 378, 362 (1995)

    Article  ADS  Google Scholar 

  12. P. Jung, Phys. Lett. A 207, 93 (1995)

    Article  ADS  Google Scholar 

  13. D.S. Leonard, L.E. Reichl, Phys. Rev. E 49, 1734 (1994)

    Article  ADS  Google Scholar 

  14. A. Longtin, A. Bulsara, F. Moss, Phys. Rev. Lett. 67, 656 (1991)

    Article  ADS  Google Scholar 

  15. A. Longtin, A. Bulsara, D. Pierson, F. Moss, Biol. Cyb. 70, 569 (1994)

    Article  MATH  Google Scholar 

  16. J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature 365, 337 (1993)

    Article  ADS  Google Scholar 

  17. J.E. Levin, J.P. Miller, Nature 380, 165 (1996)

    Article  ADS  Google Scholar 

  18. P. Babinec, Phys. Lett. A 225, 179 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. Krawiecki, J.A. Holyst, Physica A 317 (3), 597 (2003)

    Article  ADS  MATH  Google Scholar 

  20. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)

    Article  ADS  Google Scholar 

  21. A. Bulsara, L. Gammaitoni, Phys. Today 49, 39 (1996)

    Article  Google Scholar 

  22. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  23. V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier, Uspekhi Fiz. Nauk 169, 7 (1999) [engl. transl. Physics-uspekhi 42, 7 (1999)]

    Article  Google Scholar 

  24. V.S. Anishchenko, M.A. Safonova, L.O. Chua, Int. J. Bifurcation Chaos Appl. Sci. Eng. 4, 441 (1994)

    Article  MATH  Google Scholar 

  25. T.L. Carroll, L.M. Pecora, Phys. Rev. Lett. 70, 576 (1993)

    Article  ADS  Google Scholar 

  26. A. Crisanti, et al., J. Phys. A: Math. Gen. 27, L597 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. W. Korneta, Physica D 219, 93 (2006)

    Article  ADS  MATH  Google Scholar 

  28. N.G. Stocks, Phys. Rev. Lett. 84, 2310 (2000)

    Article  ADS  Google Scholar 

  29. J.J. Collins, C.C. Chow, T.T. Imhoff, Nature 376, 236 (1995)

    Article  ADS  Google Scholar 

  30. A. Neiman, L. Schimansky-Geier, F. Moss, Phys. Rev. E 56, R9 (1997)

    Article  ADS  Google Scholar 

  31. V.V. Osipov, E.V. Ponizovskaya, Phys. Rev. E 61, 4603 (2000)

    Article  ADS  Google Scholar 

  32. L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 88, 230601 (2002)

    Article  ADS  Google Scholar 

  33. A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 68, 036133 (2003)

    Article  ADS  Google Scholar 

  34. B. Shulgin, A. Neiman, V. Anishchenko, Phys. Rev. Lett. 75 (1995) 4157

    Article  ADS  Google Scholar 

  35. A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky–Geier, J. Fround, Phys. Rev. Lett. 75 (1996) 4299

    Article  ADS  Google Scholar 

  36. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (Univ of Illinois Press, 1949)

  37. A. Bulsara, A. Zador, Phys. Rev. E 54, R2185 (1996)

    Article  ADS  Google Scholar 

  38. J. Robinson, D. Asraf, A. Bulsara, M. Inchiosa, Phys. Rev. Lett. 81, 2850 (1998)

    Article  ADS  Google Scholar 

  39. M. Inchiosa, J. Robinson, A. Bulsara, Phys. Rev. Lett. 85, 3369 (2000)

    Article  ADS  Google Scholar 

  40. J. Robinson, J. Rung, A. Bulsara, M. Inchiosa, Phys. Rev. E 63, 011107 (2001)

    Article  ADS  Google Scholar 

  41. A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 68, 016103 (2003)

    Article  ADS  Google Scholar 

  42. A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 76, 041138 (2007)

    Article  ADS  Google Scholar 

  43. R.I. Stratonovich, Topics in the Theory of Random Noise, Vol. 1 (Gordon and Breach, New York, 1963)

  44. N.G. Stocks, Il Nuovo Cimento D 17, 925 (1995)

    Article  ADS  Google Scholar 

  45. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C: The art of scientific computing (Cambridge University Press, Cambridge, 1992), Website http://www.nr.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Nikitin, N.G. Stocks or A.R. Bulsara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A., Stocks, N. & Bulsara, A. Bistable sensors based on broken symmetry phenomena: The residence time difference vs. the second harmonic method. Eur. Phys. J. Spec. Top. 222, 2583–2593 (2013). https://doi.org/10.1140/epjst/e2013-02039-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-02039-2

Keywords

Navigation