Skip to main content
Log in

Multistable randomly switching oscillators: The odds of meeting a ghost

  • Regular Article
  • Nonlinear Dynamics of Stochastic Systems
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We consider oscillators whose parameters randomly switch between two values at equal time intervals. If random switching is fast compared to the oscillator’s intrinsic time scale, one expects the switching system to follow the averaged system, obtained by replacing the random variables with their mean. The averaged system is multistable and one of its attractors is not shared by the switching system and acts as a ghost attractor for the switching system. Starting from the attraction basin of the averaged system’s ghost attractor, the trajectory of the switching system can converge near the ghost attractor with high probability or may escape to another attractor with low probability. Applying our recent general results on convergent properties of randomly switching dynamical systems [1, 2], we derive explicit bounds that connect these probabilities, the switching frequency, and the chosen initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1007 (2013)

    Article  MathSciNet  Google Scholar 

  2. M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1031 (2013)

    Article  MathSciNet  Google Scholar 

  3. V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Radiophys. Quant. Electr. 29, 795 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Anishchenko, A. Neiman, Stochastic synchronization, “Stochastic Dynamics”, edited by L. Schimansky-Geier, T. Poschel, Lecture Notes in Physics (Springer, 1997), p. 155

  5. V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E 76, 046216 (2007)

    Article  ADS  Google Scholar 

  6. V. Anishchenko, T. Vadivasova, G. Strelkova, Eur. Phys. J. Special Topics 187, 109 (2012)

    Article  ADS  Google Scholar 

  7. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)

    Article  ADS  Google Scholar 

  8. V.S. Anishchenko, A.B. Neiman, M.A. Safonova, J. Stat. Phys. 70, 183 (1993)

    Article  ADS  MATH  Google Scholar 

  9. A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, Phys. Rev. E 58, 7118 (1998)

    Article  ADS  Google Scholar 

  10. V. Anishchenko, A. Neiman, F. Moss, L. Schimansky-Geier, Physics Uspekhi 42, 7 (1999)

    Article  ADS  Google Scholar 

  11. T. Stojanovsky, L. Kocarev, U. Parlitz, R. Harris, Phys. Rev. E 55, 4035 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Belykh, V. Belykh, M. Hasler, Physica D 195, 188 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Hasler, I. Belykh, IEICE Trans. Fund. E88-A, 2647 (2005)

    Article  Google Scholar 

  14. M. Porfiri, D.J. Stilwell, E.M. Bollt, J.D. Skufca, Physica D 224, 102 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Porfiri, R. Pigliacampo, SIAM J. Appl. Dynam. Sys. 7, 825 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Gorochowski, M. di Bernardo, C. Groerson, Phys. Rev. E81, 056212 (2010)

    Article  ADS  Google Scholar 

  17. P. De Lellis, M. di Bernardo, F. Garofalo, M. Porfiri, IEEE Trans. Circuits Syst., I: Fund. Theory Appl. 57, 2132 (2010)

    Article  MathSciNet  Google Scholar 

  18. F. Sorrentino, E. Ott, Phys. Rev. Lett. 100, 114101 (2008)

    Article  ADS  Google Scholar 

  19. P. So, B. Cotton, E. Barreto, Chaos 18, 037114 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Tse, M. di Bernardo, Proc. IEEE 90, 768 (2002)

    Article  Google Scholar 

  21. C. Beck, Commun. Math. Phys. 130, 51 (1990)

    Article  ADS  MATH  Google Scholar 

  22. A. Skorokhod, F. Hoppensteadt, H. Salehi, Random perturbation methods (Springer-Verlag, New York, 2002)

  23. M.I. Freidlin, A.D. Wentzell, Random perturbations of dynamical systems (Springer-Verlag, New York, 1998)

  24. X. Mao, C. Yuan, Stochastic differential equations with Markovian switching (Imperial College Press, London, 2006)

  25. Y. Bakhtin, T. Hurth, Nonlinearity 25, 2937 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Belykh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belykh, I., Belykh, V., Jeter, R. et al. Multistable randomly switching oscillators: The odds of meeting a ghost. Eur. Phys. J. Spec. Top. 222, 2497–2507 (2013). https://doi.org/10.1140/epjst/e2013-02032-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-02032-9

Keywords

Navigation