Skip to main content
Log in

A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Smart materials have gained a great deal of attention in recent years because of their unique actuation properties. Actuators are needed in the medical field where space is limited. Presented within this work is an organ positioner used to position the esophagus away from the left atrium to avoid the development of an esophageal fistula during atrial fibrillation (afib) ablation procedures. Within this work, a subroutine was implemented into the finite element framework to predict the midspan load capacity of a near equiatomic NiTi specimen in both the super elastic and shape memory regimes. The purpose of the simulations and experimental results was to develop a design envelope for the organ positioning device. The transverse loading experiments were conducted at several different temperatures leading to the ability to design a variable stiffness actuator. This is essential because the actuator must not be too stiff to injure the organ it is positioning. Extended further, geometric perturbations were applied in the virtual model and the entire design envelope was developed. Further, nitinol was tested for safety in the radio-frequency environment (to ensure that local heating will not occur in the ablation environment). With the safety of the device confirmed, a primitive prototype was manufactured and successfully tested in a cadaver. The design of the final device is also presented. The contribution of this work is the presentation of a new type of positoning device for medical purposes (NiTiBOP). In the process a comprehensive model for transverse actuation of an SMA actuator was developed and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gillet, E. Patoor, M. Berveiller, J. Intell. Material Syst. Struct. 9 (1998), doi: 10.1177/1045389X9800900505

  2. L.C. Brinson, M.S. Huang, J. Intell. Material Syst. Struct. 7, 108 (1996)

    Article  Google Scholar 

  3. L.C. Brinson, Intell. Mater. Syst. Struct. 4, 229 (1993)

    Article  Google Scholar 

  4. M. Brocca, L. Brinson, Z.P. Bazant, J. Mech. Phys. Solids 50, 1051 (2002)

    Article  ADS  MATH  Google Scholar 

  5. D.C. Lagoudas, Shape Memory Alloys Modeling and Engineering Applications (Springer Science+Business Media, 2008), ISBN: 978-0-387-47684-1

  6. Y. Han, Mechatronics 11, 677 (2001)

    Article  Google Scholar 

  7. M. Kohl, E. Just, W. Pfleging, S. Miyazaki, Sensors Actuators 83, 208 (2000)

    Article  Google Scholar 

  8. A.V. Irzhak, V.S. Kalashnikov, V.V. Koledov, D.S.K.G.A. Lebedev, P.V. Lega, N.A. Pikhtin, I.S. Tarasov, V.G. Shavrov, A.V. Shelyakov, Technical Phys. Lett. 36, 329 (2010)

    Article  ADS  Google Scholar 

  9. J. Rejzner, C. Lexcellent, B. Raniecki, Int. J. Mech. Sci. 44, 665 (2002)

    Article  MATH  Google Scholar 

  10. Z. Chaudhry, C.A. Rogers, J. Intell. Material Syst. Struct. 2, 581 (1991)

    Article  Google Scholar 

  11. M. Their, A. Mick, D. Drescher, C. Bourauel, J. Materials Sci. 26, 6473 (1991)

    Article  ADS  Google Scholar 

  12. S. Hashemi, S. Khadem, Int. J. Mech. Sci. 48, 44 (2006)

    Article  MATH  Google Scholar 

  13. P.K. Purohit, K. Bhattacharya, Int. J. Solids Struct. 39, 3907 (2002)

    Article  MATH  Google Scholar 

  14. D.J. Hartl, G. Chatzigeorgiou, D.C. Lagoudas, Int. J. Plasticity 26, 1485 (2010)

    Article  MATH  Google Scholar 

  15. H. Aupperle, N. Doll, T. Walther, P. Kornherr, C. Ullmann, H.-A. Schoon, F.W. Mohr, J. Thoracic Cardiovascular Surgery 130, 1549 (2005)

    Article  Google Scholar 

  16. T.D. Bahnson, Pacing Clinical Electrophys. 32, (2009)

  17. B. Hall, A. Shah, D. Huang, S. Rosero, J. Daubert, J. Interventional Cardiac Electrophys. 13, 135 (2005)

    Article  Google Scholar 

  18. M.S. Arruda, L. Armaganijan, L.D. Biase, R. Rashidi, A. Natale, J. Cardiovascular Electrophys. 32, 248 (2009)

    Google Scholar 

  19. K. Kanjwal, R. Yeasting, H. Elsamaloty, C. Baptista, J. Maloney, M. Sheikh, M. Elahinia, W. Anderson, J. Maloney, J. Interventional Cardiac Electrophys. 30, 45 (2011)

    Article  Google Scholar 

  20. W. Anderson, A. Eshghinejad, M. Elahinia, An Organ Positioner to Mitigate Collateral Tissue Damage in Esophagus during Atrial Fibrilation, in Design of Medical Devices Conference (University of Minnesota, 2011)

  21. F. Auricchio, R.L. Taylor, Shape memory alloy superelastic behavior: 3D finite-element simulation, in Proc. 3rd Int. Conf. on Intelligent Materials (1996), p. 487

  22. F. Auricchio, D. Fugazza, R. DesRoches, Intell. Mater. Syst. Struct. 19, 47 (2008)

    Article  Google Scholar 

  23. K. Tanaka, Res. Mech. 18, 251 (1986)

    Google Scholar 

  24. B. Raniecki, C. Lexcellent, Eur. J. Mech. A/Solids 17, 185 (1998)

    Article  MATH  Google Scholar 

  25. M.O. Moussa, Z. Moumni, O.D.C. Touz, W. Zaki, J. Intell. Material Syst. Struct. 23, 1593 (2012)

    Article  Google Scholar 

  26. B. Peultier, T.B. Zineb, E. Patoor, Mech. Materials 38, 510 (2006)

    Article  Google Scholar 

  27. L. Saint-Sulpice, S.A. Chirani, S. Calloch, Mech. Materials 41, 12 (2009)

    Article  Google Scholar 

  28. Y. Chemisky, A. Duval, E. Patoor, T.B. Zineb, Mech. Materials 43, 361 (2011)

    Article  Google Scholar 

  29. J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, S. Sohrabpour, Int. J. Plasticity 26, 976 (2010)

    Article  MATH  Google Scholar 

  30. P. Sedlk, M. Frost, B. Beneov, T.B. Zineb, P. Ittner, Int. J. Plasticity 39, 132 (2012)

    Article  Google Scholar 

  31. J. Boyd, D. Lagoudas, Int. J. Plasticity 12, 805 (1996)

    Article  MATH  Google Scholar 

  32. M.A. Qidwai, D.C. Lagoudas, Int. J. Plasticity 16, 1309 (2000)

    Article  MATH  Google Scholar 

  33. Y. Gillet, E. Patoor, M. Berveiller, J. Phys. 5, 343 (1995)

    Google Scholar 

  34. E.Q. Sun, available at: http://mekanik.net/NETE/Shear

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, W., Eshghinejad, A., Azadegan, R. et al. A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner. Eur. Phys. J. Spec. Top. 222, 1503–1518 (2013). https://doi.org/10.1140/epjst/e2013-01941-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01941-9

Keywords

Navigation