Skip to main content
Log in

Impact of laser on bismuth thin-films

A 10 ps time-resolved study at the CRISTAL diffraction beamline (SOLEIL synchrotron)

  • Regular Article
  • Semi-metals and the Topological Insulator
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We used the newly developed low-α mode of SOLEIL synchrotron to observe optically induced strain waves in 200 nm bismuth thin-films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Lorenc, J. Hébert, N. Moisan, E. Trzop, M. Servol, M. Buron-Le Cointe, H. Cailleau, M.L. Boillot, E. Pontecorvo, M. Wulff, S. Koshihara, E. Collet, Phys. Rev. Lett. 103, 028301 (2009)

    Article  ADS  Google Scholar 

  2. J. Feikes, K. Holldack, P. Kuske, G. Wüstefeld, Proc. EPAC 2004, 1951 (2004)

  3. P. Brunelle, F. Briquez, A. Loulergue, O. Marcouillé, A. Nadji, L.S. Nadolski, M.-A. Tordeux, J. Zhang, Proc. IPAC 2011, 2124 (2011)

  4. M.-A. Tordeux, J. Barros, A. Bence, P. Brunelle, N. Hubert, M. Labat, A. Nadji, L. Nadolski, P. Lebasque, J.-P. Pollina, C. Evain, Proc. IPAC 2012, 1608 (2012)

  5. A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, Nucl. Instr. Meth. A 425, 385 (1999)

    Article  ADS  Google Scholar 

  6. R.W. Schoenlein, S. Chattopadhyay, H.H.W. Chong, T.E. Glover, P.A. Heimann, C.V. Shank, A.A. Zholents, M.S. Zolotorev, Science 287, 2237 (2000)

    Article  ADS  Google Scholar 

  7. P. Beaud, S.L. Johnson, A. Streun, R. Abela, D. Abramsohn, D. Grolimund, F. Krasniqi, T. Schmidt, V. Schlott, G. Ingold, Phys. Rev. Lett. 99, 174801 (2007)

    Article  ADS  Google Scholar 

  8. C. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Forster, J.-L. Martin, A. Antonetti, Nature 390, 490 (1997)

    Article  ADS  Google Scholar 

  9. S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, V. Chvykov, F. Dollar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C.A.J. Palmer, J. Schreiber, K. Ta Phuoc, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick, Z. Najmudin, Nat. Phys. 6, 980 (2010)

    Article  Google Scholar 

  10. A. Cho, Science 330, 1470 (2010)

    Article  ADS  Google Scholar 

  11. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, J. Galayda, Nat. Photonics 4, 641 (2010)

    Article  ADS  Google Scholar 

  12. J. Larsson, A. Allen, P.H. Bucksbaum, R.W. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D.A. Reis, K. Scheidt, A. Sjörgen, P. Sondhauss, M. Wulff, J.S. Wark, Appl. Phys. A 75, 467 (2002)

    Article  ADS  Google Scholar 

  13. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C.W. Siders, F. Ráksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Nature 398, 310 (1999)

    Article  ADS  Google Scholar 

  14. J. Chen, W.-K. Chen, J. Tang, P.M. Rentzepis, Proc. Natl. Acad. Sci. U.S.A. 108, 18887 (2011)

    Article  ADS  Google Scholar 

  15. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. von der Linde, K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011)

    Article  ADS  Google Scholar 

  16. Bismuth has a rhomboedral A7 structure (space group R3m) with the following rhomboedral (hexagonal) parameters at 300 K: a R = 4.746 Å, αR =57.23∘ (a H = 4.546 Å, c H = 11.862 Å). In this article, we refer to the rhomboedral cell which contains 2 Bi atoms located on the (2c) Wyckoff positions

  17. T.K. Cheng, S.D. Brorson, A.S. Kazeroonian, J.S. Moodera, G. Dresselhaus, M.S. Dresselhaus, E.P. Ippen, Appl. Phys. Lett. 57, 1004 (1990)

    Article  ADS  Google Scholar 

  18. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. F’orster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  19. D.M. , Fritz, D.A. Reis, B. Adams, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, S. Engemann, S. Fahy, R.W. Falcone, P.H. Fuoss, K.J. Gaffney, M.J. George, J. Hajdu, M.P. Hertlein, P.B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S.H. Lee, A.M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E.D. Murray, A.J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D.P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, J.B. Hastings, Science 315, 633 (2007)

    Article  ADS  Google Scholar 

  20. S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, E.D. Murray, S. Fahy, G. Ingold, Acta Cryst. A 66, 157 (2010)

    Article  Google Scholar 

  21. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)

    Article  ADS  Google Scholar 

  22. S.L. Johnson, P. Beaud, C.J. Milne, F.S. Krasniqi, E.S. Zijlstra, M.E. Garcia, M. Kaiser, D. Grolimund, R. Abela, G. Ingold, Phys. Rev. Lett. 100, 155501 (2008)

    Article  ADS  Google Scholar 

  23. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  24. The momentum compaction factor α relates the length of an electron trajectory (L0 + ΔL) to its difference in momentum (ΔP) with an synchronous electron (L 0, P 0): \(\alpha = \frac{{{{\Delta L} \mathord{\left/ {\vphantom {{\Delta L} {L_0 }}} \right. \kern-\nulldelimiterspace} {L_0 }}}} {{{{\Delta P} \mathord{\left/ {\vphantom {{\Delta P} {P_0 }}} \right. \kern-\nulldelimiterspace} {P_0 }}}}\).

  25. P. Pangaud, S. Basolo, N. Boudet, J.-F. Berar, B. Chantepie, J.-C. Clemens, P. Delpierre, B. Dinkespiler, K. Medjoubi, S. Hustache, M. Menouni, Ch. Morel, Nucl. Instrum. Methods Phys. Res. A 591, 159 (2008)

    Article  ADS  Google Scholar 

  26. J.-P. Ricaud, P. Betinelli-Deck, J. Bisou, X. Elattaoui, C. Laulhé, P. Monteiro, L.S. Nadolski, G. Renaud, S. Ravy, M. Silly, F. Sirotti, Proceedings of ICALEPCS 2011, 1036 (2011)

  27. The spectral response range specified for this photodiode is 850 to 1650 nm, but the detection efficiency is still sufficient to detect synchrotron X-ray pulses even in the low-α mode. The guard glass in front of the diode can be removed to increase sensitivity to X-rays below 10 keV

  28. G. Moriena, M. Hada, G. Sciaini, J. Matsuo, R.J.D. Miller, J. Appl. Phys. 111, 043504 (2012)

    Article  ADS  Google Scholar 

  29. For diffraction experiments, the XPAD3.2 detector has to be used in its proportional counting regime, i.e. with a number of incoming photons limited to 1 photon per pixel per 90 ns period. In some cases, especially when using hybrid filling modes, it is not possible to remove all X-ray attenuators despite a low counting rate in the time-resolved mode

  30. Y. Eckstein, A.W. Lawson, D.H. Reneker, J. Appl. Phys. 31, 1534 (1960)

    Article  ADS  Google Scholar 

  31. E.F. Cave, L.V. Holroyd, J. Appl. Phys. 31, 1357 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Laulhé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laulhé, C., Cammarata, M., Servol, M. et al. Impact of laser on bismuth thin-films. Eur. Phys. J. Spec. Top. 222, 1277–1285 (2013). https://doi.org/10.1140/epjst/e2013-01922-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01922-0

Keywords

Navigation