Skip to main content
Log in

Cluster formation in populations of coupled chaotic neurons

  • Regular Article
  • Complex Networks and Synchronization
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate cluster formation in populations of coupled chaotic model neurons under homogeneous global coupling, and distance-dependent coupling, where the coupling weights between neurons depend on their relative distance. Three types of clusters emerge for global coupling: synchronized cluster, two state cluster and anti-phase cluster. In addition to these, we find a novel three state cluster for distance-dependent coupling, where the population splits into two synchronized groups and one incoherent group. Lastly, we study a system with random inhomogeneous coupling strengths, in order to discern if the special pattern found in distance-dependent coupling arises from the underlying lattice structure or from the inhomogeneity in coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

  2. J. Crutchfield, K. Kaneko, Directions in Chaos, edited by B.L. Hao (World Scientific, Singapore, 1987)

  3. P. Alstrom, R.K. Ritala, Phys. Rev. A 35, 300 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Hadley, K. Weisenfeld, Phys. Rev. Lett. 62, 1335 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  5. K. Wiesenfeld, P. Colet, S. Strogatz, Phys. Rev. Lett. 76, 404 (1996)

    Article  ADS  Google Scholar 

  6. K. Kaneko, Phys. Rev. Lett. 63, 219 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Perez, S. Sinha, H.A. Cerdeira, Physica D 63, 341 (1993)

    Article  ADS  MATH  Google Scholar 

  8. K. Kaneko, Physica D 23, 436 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Kaneko, Physica D 37, 60 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. K. Kaneko, Physica D 41, 137 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. K. Kaneko, Physica D 54, 5 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. Manruiba, A. Mikhailov Phys. Rev. E 60, 1579 (1999)

    Article  ADS  Google Scholar 

  13. D.H. Zanette, A.S. Mikhailov, Phys. Rev. E 57, 276 (1998)

    Article  ADS  Google Scholar 

  14. A.S. Kuznetsov, J. Kurths, Phys. Rev. E 66, 026201 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Koseska, E. Volkov, A. Zaikin, J. Kurths, Phys. Rev. E 75, 031916 (2007)

    Article  ADS  Google Scholar 

  16. A. Koseska, E. Ullner, E. Volkov, J. Kurths, J. Garca-Ojalvo, J. Theor. Biol. 263, 189 (2010)

    Article  Google Scholar 

  17. K. Miyakawa, K. Yamada, Physica D 151, 217 (2001)

    Article  ADS  MATH  Google Scholar 

  18. W. Wang, I.Z. Kiss, J.L. Hudson, Chaos: An Interdisciplinary J. Nonlinear Sci. 10, 248 (2000)

    Article  Google Scholar 

  19. W. Wang, I.Z. Kiss, J.L. Hudson, Phys. Rev. Lett. 86, 4954 (2001)

    Article  ADS  Google Scholar 

  20. I.Z. Kiss, J.L. Hudson, Chaos: An Interdisciplinary J. Nonlinear Sci. 13, 999 (2003)

    Article  Google Scholar 

  21. Y. Jiang, Phys. Lett. A 267, 342 (2000)

    Article  ADS  Google Scholar 

  22. J.L. Rogers, L.T. Wille, Phys. Rev. E 54, R2193 (1996)

    Article  ADS  Google Scholar 

  23. S.E. de S. Pinto, R.L. Viana, Phys. Rev. E 61, 5154 (2000)

    Article  ADS  Google Scholar 

  24. C.F. Woellner, S.R. Lopes, R.L. Viana, I.L. Caldas, Chaos, Solitons Fractals 41, 2201 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. G. Tang, K. Xu, L. Jiang, Phys. Rev. E 84, 046207 (2011)

    Article  ADS  Google Scholar 

  26. C. Masoller, A.C. Marti, D. Zanette, Physica A 325, 186 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A.C. Marti, C. Masoller, Phys. Rev. E 67, 056219 (2003)

    Article  ADS  Google Scholar 

  28. A.C. Marti, C. Masoller, Physica A 342, (2004) 344

    Article  ADS  Google Scholar 

  29. D.R. Chialvo, Chaos, Solitons Fractals 5, 461 (1995)

    Article  ADS  MATH  Google Scholar 

  30. P.J. Davis, Circulant Matrices (Wiley, New York, 1979)

  31. P. Gade, R. Amritkar, Phys. Rev. E 47, 143 (1993)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. K. Kamal or S. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, N.K., Sinha, S. Cluster formation in populations of coupled chaotic neurons. Eur. Phys. J. Spec. Top. 222, 905–915 (2013). https://doi.org/10.1140/epjst/e2013-01893-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01893-0

Keywords

Navigation