Skip to main content
Log in

The initial transient of natural convection during copper electrolysis in the presence of an opposing Lorentz force: Current dependence

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Magnetic fields are well-established in electrochemistry as an attractive tool to improve both the quality of the deposit as well as the deposition rate. The key mechanism is a mass transfer enhancement by Lorentz-force-driven convection. However, during electrolysis this convection interacts with buoyancy-driven convection, which arises from concentration differences, in a sometimes intriguing way. In the case of a Lorentz force opposing buoyancy, this is due to the growth of a bubble-like zone of less-concentrated cupric ion solution at the lower part of the vertical cathode when copper electrolysis is performed. If buoyancy is strong enough to compete with the Lorentz force, this zone rises along the cathode and causes surprisingly unsteady initial transient behaviour. We explore this initial transient under galvanostatic conditions by analyzing the development of the concentration and velocity boundary layers obtained by Mach-Zehnder interferometry and particle image velocimetry. Particular attention is also paid to higher current densities above the limiting current, obtained from potentiodynamic measurements, at which a chaotic advection takes place. The results are compared by scaling analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alemany, J.P. Chopart, in Magnetohydrodynamics – Historical Evolution and Trends, edited by S. Molokov, R. Moreau, H.K. Moffatt (Springer, Dordrecht, 2007), p. 391

  2. T.Z. Fahidy, in Modern Aspects of Electrochemistry, No. 32, edited by B.E. Conway, (Kluwer Academic, New York, 1999), p. 333

  3. R.N. O’Brien, K.S.V. Santhanam, J. Appl. Electrochem. 27, 573 (1997)

    Article  Google Scholar 

  4. A. Sugiyama, M. Hashiride, R. Morimoto, Y. Nagai, R. Aogaki, Electrochim. Acta 49, 5115 (2004)

    Article  Google Scholar 

  5. T. Weier, J. Hüller, G. Gerbeth, F.-P. Weiss, Chem. Eng. Sci. 60, 293 (2005)

    Article  Google Scholar 

  6. X. Yang, K. Eckert, K. Seidel, M. Uhlemann, Electrochim. Acta 54, 352 (2008)

    Article  Google Scholar 

  7. S. Mühlenhoff, G. Mutschke, D. Koschichow, X. Yang, A. Bund, J. Fröhlich, S. Odenbach, K. Eckert, Electrochim. Acta 69, 209 (2012)

    Article  Google Scholar 

  8. D. Koschichow, G. Mutschke, X. Yang, A. Bund, J. Fröhlich, Russ. J. Electrochem. 48, 682 (2012)

    Article  Google Scholar 

  9. M. Uhlemann, A. Gebert, M. Herrich, A. Krause, A. Cziraki, L. Schultz, Electrochim. Acta 48, 3005 (2003)

    Article  Google Scholar 

  10. I. Tabakovic, S. Riemer, M. Sun, V.A. Vas’ko, M.T. Kief, J. Electrochem. Soc. 152, C851 (2005)

    Article  Google Scholar 

  11. H. Matsushima, Y. Fukunaka, Y. Ito, A. Bund, W. Plieth, J. Electroanal. Chem. 587, 93 (2006)

    Article  Google Scholar 

  12. J.A. Koza, M. Uhlemann, A. Gebert, Ch. Mickel, S. Baunack, L. Schultz, Magnetohydrodynamics 45, 259 (2009)

    Google Scholar 

  13. J. Jorné, J. Electrochem. Soc. 131, 2283 (1984)

    Article  Google Scholar 

  14. C.R. Wilke, M. Eisenberg, C.W. Tobias, J. Electrochem. Soc. 100, 513 (1953)

    Article  Google Scholar 

  15. F.R. McLarnon, R.H. Muller, C.W. Tobias, Ind. Eng. Chem. Fundamen. 18, 97 (1979)

    Article  Google Scholar 

  16. S. Mühlenhoff, Ph.D. thesis, TU Dresden, 2012

  17. X. Yang, K. Eckert, A. Heinze, M. Uhlemann, J. Electroanal. Chem. 613, 97 (2008)

    Article  Google Scholar 

  18. P.A. Nikrityuk, M. Ungarish, K. Eckert, R. Grundmann, Phys. Fluids 17, 067101 (2005)

    Article  ADS  Google Scholar 

  19. J. Patterson, J. Imberger, J. Fluid Mech. 65, 100 (1980)

    Google Scholar 

  20. V.M.M. Lobo (ed.), Handbook of Electrolyte Solutions Parts A and B (Elsevier Science, Amsterdam, 1989)

  21. T.Z. Fahidy, J. Appl. Electrochem. 13, 553 (1983)

    Article  Google Scholar 

  22. X. Yang, K. Eckert, S. Mühlenhoff, S. Odenbach, Electrochim. Acta 54, 7056 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegeng Yang or Kerstin Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Mühlenhoff, S., Nikrityuk, P.A. et al. The initial transient of natural convection during copper electrolysis in the presence of an opposing Lorentz force: Current dependence. Eur. Phys. J. Spec. Top. 220, 303–312 (2013). https://doi.org/10.1140/epjst/e2013-01815-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01815-2

Keywords

Navigation