Skip to main content
Log in

Electromagnetic flow control in poor conductors

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Lorentz force-based flow control in materials with low electrical conductivity has a long history back to the first half of the 19th century. This review will focus on developments during the last two decades, collecting results from numerical simulations and laboratory experiments. Typically, the actuators consist of permanent magnets and electrodes flush-mounted with the surface, generating Lorentz forces in the fluid layers adjacent to the wall. We will discuss the application of Lorentz forces to reduce friction drag in turbulent boundary layers and to delay boundary layer transition. The control of separated flows and shear layers is another key aspect of the review. Energetic efficiency, one of the main criteria for flow control, and its relation to typical operating conditions will be analyzed as well. Lorentz forces can be successfully used to control a broad range of flow phenomena and are a versatile tool for basic fluid dynamics research. However their current applicability in large scale systems is hampered by the low electrical to mechanical efficiency intrinsic to actuators based on the magnetic fields delivered by today’s permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Weier, V. Shatrov, G. Gerbeth, in Magnetohydrodynamics: historical evolution and trends (Springer, Dordrecht, 2007)

  2. A. Gailitis, O. Lielausis, Applied Magnetohydrodynamics, Reports of the Riga Physics Institute 12, 143 (1961) (in Russian)

    Google Scholar 

  3. É. Crausse, P. Cachon, Comptes rendus hebdomadaires des séances de l’Académie des Sciences 238, 2488 (1954)

    Google Scholar 

  4. R. Moreau, Magnetohydrodynamics (Kluwer Academic Publishers, Dordrecht, 1990)

  5. V.V. Avilov, Tech. Report Rossendorf Researckh Center, Germany, 1998

  6. J. Donovan, L. Kral, A. Cary, in Proc. 28th AIAA Fluid Dynamics Conference, Snowmass Village, 1997, AIAA 97-1918

  7. Y. Du, A. Beskok, G. Karniadakis, in Proc. of the 3rd ASME/JSME Join Fluids Engineering Conference, San Francisco, 1999

  8. L. Rossi, J.P. Thibault, J. Turbulence 3, 1 (2002)

    Article  ADS  Google Scholar 

  9. A.B. Tsinober, in Viscous Drag Reduction in Boundary Layers, edited by D.M. Bushnell, J.N. Hefner (1990)

  10. O. Lielausis, A. Gailitis, R. Dukure, in Proc. Int. Conf. on Energy Transfer in Magnetohydrodynamic Flows, Cadarache, 1991, p. 5

  11. D.M. Nosenchuck, G. Brown, in Near-Wall Turbulent Flows, edited by R. So, C. Speziale, B. Launder (Elsevier Science, New York, 1993), p. 689

  12. D.M. Nosenchuck, G.L. Brown, H.C. Culver, T. Eng, I. Huang, in Proc. 12th Australian Fluid Mechanics Conference, Sydney, 1995, p. 93

  13. D.M. Nosenchuck, in 4th AIAA Shear Flow Control Conference, Snowmass Village, 1997

  14. R. Bandyopadhay, in Proc. of the Int. Symp. on Seawater Drag Reduction, Newport, 1998, p. 457

  15. P. Bandyopadhyay, J. Castano, W. Nedderman, D. Thivierge, J. Stupak, Tech. Rep. Naval Undersea Warfare Center Newport, 2001

  16. Y. Du, C. Crawford, G. Karniadakis, in Proc. Int. Symposium on Seawater Drag Reduction, Newport, 1998

  17. P.L. O’Sullivan, S. Biringen, Phys. Fluids 10, 1169 (1998)

    Article  ADS  Google Scholar 

  18. C. Henoch, J. Stace, Phys. Fluids 7, 1371 (1995)

    Article  ADS  Google Scholar 

  19. C.H. Crawford, G.E. Karniadakis, Phys. Fluids 9, 788 (1997)

    Article  ADS  Google Scholar 

  20. T.W. Berger, J. Kim, C. Lee, J. Lim, Phys. Fluids 12, 631 (2000)

    Article  ADS  MATH  Google Scholar 

  21. K.S. Breuer, J. Park, C. Henoch, Phys. Fluids 16, 897 (2004)

    Article  ADS  Google Scholar 

  22. J. Pang, K.S. Choi, Phys. Fluids 16, 35 (2004)

    Article  ADS  Google Scholar 

  23. Y. Du, V. Symeonidis, G.E. Karniadakis, J. Fluid Mech. 457, 1 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. L. Huang, B. Fan, G. Dong, Phys. Fluids 22, 015103 (2010)

    Article  ADS  Google Scholar 

  25. V. Shatrov, G. Gerbeth, Phys. Fluids 19, 035109 (2007)

    Article  ADS  Google Scholar 

  26. H. Schlichting, K. Gersten, Genzschicht-Theorie (Springer, 1997)

  27. A.B. Tsinober, A.G. Shtern, Magnitnaya Gidrodinamika 3, 152 (1967)

    Google Scholar 

  28. T. Weier, T. Albrecht, G. Mutschke, G. Gerbeth, in Int. Workshop on Flow Control by Tailored Magnetic Fields (FLOWCOMAG), Dresden, 2004

  29. E. Kneisel, Internal report, FZ Rossendorf, 2004 (in German)

  30. T. Albrecht, R. Grundmann, G. Mutschke, G. Gerbeth, Phys. Fluids 18, 098103 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Albrecht, Ph.D. thesis, TU Dresden, 2011

  32. A.R. Wazzan, C. Gazley, A.M.O. Smith, AIAA J. 19, 810 (1981)

    Article  ADS  Google Scholar 

  33. T. Weier, Ph.D. thesis, TU Dresden, 2005

  34. J.O. Pralits, A. Hanifi, D.S. Henningson, J. Fluid Mech. 467, 129 (2002)

    Article  ADS  MATH  Google Scholar 

  35. C. Airiau, A. Bottaro, S. Walther, D. Legendre, Phys. Fluids 15, 1131 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. W. MacCormack, O. Tutty, E. Rogers, P. Nelson, Control Engineering Practice 10, 243 (2002)

    Article  Google Scholar 

  37. M. Gad-el-Hak, Flow Control: Passive, Active, and Reactive Flow Management (Cambridge University Press, Cambridge, 2000)

  38. T. Albrecht, H. Metzkes, R. Grundmann, G. Mutschke, G. Gerbeth, Magnetohydrodyn. 44, 205 (2008)

    ADS  Google Scholar 

  39. O.H. Wehrmann, Phys. Fluids 8, 1389 (1965)

    Article  ADS  Google Scholar 

  40. R.W. Milling, Phys. Fluids 24, 979 (1981)

    Article  ADS  Google Scholar 

  41. R.W. Metcalfe, C.J. Rutland, J.H. Duncan, J.J. Riley, AIAA Journal 24, 1494 (1986)

    Article  ADS  MATH  Google Scholar 

  42. S. Biringen, Phys. Fluids 27, 1345 (1984)

    Article  ADS  Google Scholar 

  43. M. Gaster, Current Science 79, 774 (2000)

    Google Scholar 

  44. S. Grundmann, C. Tropea, Exp. Fluids 44, 795 (2008)

    Article  Google Scholar 

  45. D. Greenblatt, I.J. Wygnanski, Prog. Aero. Sci. 36, 487 (2000)

    Article  Google Scholar 

  46. J.M. Rullan, P.P. Vlachos, D.P. Telionis, M.D. Zeiger, AIAA Journal Aircraft 43, 1738 (2006)

    Article  Google Scholar 

  47. C. Crawford, G. Karniadakis, in 26th AIAA Fluid Dynamics Conference, San Diego, 1995, AIAA 95-2185

  48. O. Posdziech, R. Grundmann, Eur. J. Mech. B/Fluids 20, 255 (2001)

    Article  MATH  Google Scholar 

  49. O. Posdziech, Ph.D. thesis, TU Dresden, 2008

  50. T. Weier, G. Gerbeth, G. Mutschke, E. Platacis, O. Lielausis, Exper. Thermal Fluid Sci. 16, 84 (1998)

    Article  Google Scholar 

  51. S. Kim, C. Lee, Exp. Fluids 28, 252 (2000)

    Article  Google Scholar 

  52. T. Weier, G. Gerbeth, G. Mutschke, O. Lielausis, G. Lammers, Flow, Turbulence Comb. 71, 5 (2003)

    Article  MATH  Google Scholar 

  53. G. Mutschke, G. Gerbeth, T. Albrecht, R. Grundmann, Eur. J. Mech. B/Fluids 25, 137 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. T. Weier, G. Gerbeth, Eur. J. Mech. B/Fluids 23, 835 (2004)

    Article  ADS  MATH  Google Scholar 

  55. C. Cierpka, T. Weier, G. Gerbeth, in Active Flow Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), edited by R. King (Springer, Berlin, 2007), p. 27

  56. C. Cierpka, T. Weier, G. Gerbeth, Exper. Fluids 45, 943 (2008)

    Article  ADS  Google Scholar 

  57. C. Cierpka, Ph.D. thesis, TU Dresden, 2009

  58. C. Cierpka, T. Weier, G. Gerbeth, Phys. Fluids 22, 075109 (2010)

    Article  ADS  Google Scholar 

  59. T. Albrecht, T. Weier, G. Gerbeth, H. Metzkes, J. Stiller, in 5th AIAA Flow Control Conference, Chicago, 2010, AIAA-2010-4709

  60. T. Weier, T. Albrecht, G. Gerbeth, S. Wittwer, H. Metzkes, J. Stiller, in Proc. of the 7th Int. Symp. on Turbulence and Shear Flow Phenomena (TSFP-7), Ottawa, 2011

  61. S. Snarski, in Proc. of the International Symposium on Seawater Drag Reduction, Newport, 1998, p. 419

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Albrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, T., Stiller, J., Metzkes, H. et al. Electromagnetic flow control in poor conductors. Eur. Phys. J. Spec. Top. 220, 275–285 (2013). https://doi.org/10.1140/epjst/e2013-01813-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01813-4

Keywords

Navigation