Skip to main content
Log in

Influence of magnetic fields on the behavior of bubbles in liquid metals

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper reviews numerical and experimental investigations concerned with the physics of rising bubbles in conducting liquid metals under the action of a magnetic field. Different situations, characterized by different void fractions ranging from single bubbles to bubble swarms, are considered. The impact of the geometrical arrangement is addressed covering large containers with bubbles far from the walls and narrow containers with bubbles interacting with the walls. It is demonstrated that magnetic fields offer a convenient means to influence bubble dynamics, which makes them interesting for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhang, S. Eckert, G. Gerbeth, Int. J. Multiphase Flow 106, 824 (2005)

    Article  Google Scholar 

  2. A. Andruszkiewicz, K. Eckert, S. Eckert, S. Odenbach, Eur. Phys. J. Special Topics 220, 53 (2013)

    Google Scholar 

  3. X. Miao, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Int. J. Multiphase Flow 48, 32 (2013)

    Article  Google Scholar 

  4. G. Tryggvason, R. Scardovelli, S. Zaleski, Gas-Liquid Multiphase flows (Cambridge University Press, 2011)

  5. A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flows (Cambridge University Press, 2009)

  6. E. Loth, Computational fluid dynamics of bubbles, drops and particles (Cambridge University Press, 2009)

  7. D. Gaudlitz, N. Adams, Direct, Large-Eddy Simulation VII, ERCOFTAC Series 13, 465 (2010)

    Article  Google Scholar 

  8. D. Gaudlitz, N. Adams, Comput. Fluids 37, 1320 (2008)

    Article  MATH  Google Scholar 

  9. D. Gaudlitz, Ph.D. thesis, Technische Universität München, Fakultät für Maschinenwesen, 2008

  10. T. Kempe, J. Fröhlich, J. Comput. Phys. 231, 3663 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. T. Kempe, Ph.D. thesis, Technische Universität Dresden, Fakultät für Maschinenwesen, 2011

  12. T. Kempe, S. Schwarz, J. Fröhlich, Academy Colloquium Immersed Boundary Methods: Current Status and Future Research Directions. Amsterdam, The Netherlands, ISBN 978-90-6984-590-6 (2009)

  13. S. Schwarz, J. Fröhlich, 7th Int. Symp. Turbulence Shear Flow Phenomena, Ottawa, Canada (2011)

  14. S. Schwarz, J. Fröhlich, 8th PAMIR Int. Conf. Fundamental Applied MHD, Borgo, Corsica, France I, 223 (2011)

  15. S. Schwarz, J. Fröhlich, AIP Conf. Ser., Int. Conf. Numerical Anal. Appl. Math., Kos, Greece 1479, 104 (2012)

    ADS  Google Scholar 

  16. R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles (Dover Publications, 1978)

  17. L.S. Fan, K. Tsuchiya, Bubble wake dynamics in liquids and liquid-solid suspensions (Butterworth-Heinemann, 1990)

  18. C. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, 1995)

  19. J. Magnaudet, I. Eames, Annu. Rev. Fluid Mech. 32, 659 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Loth, Int. J. Multiphase Flow 34, 523 (2008)

    Article  Google Scholar 

  21. K. Schwerdtfeger, Sci. Chem. Eng. Sci. 23, 937 (1968)

    Article  Google Scholar 

  22. Y. Mori, K. Hijikata, I. Kuriyama, J. Heat Transf. 99, 404 (1977)

    Article  Google Scholar 

  23. T. Maxworthy, J. Fluid Mech. 31, 801 (1968)

    Article  ADS  Google Scholar 

  24. G. Yonas, J. Fluid Mech. 30, 813 (1967)

    Article  ADS  Google Scholar 

  25. K. Ellingsen, F. Risso, J. Fluid Mech. 440, 235 (2001)

    Article  ADS  MATH  Google Scholar 

  26. M. Lesieur, Turbulence in Fluids (Kluwer Academic Publishers, 1997)

  27. N. Shevchenko, S. Boden, S. Eckert, D. Borin, M. Heinze, S. Odenbach, Eur. Phys. J. Special Topics 220, 63 (2013)

    Google Scholar 

  28. S. Heitkam, S. Schwarz, J. Fröhlich, Magnetohydrodyn. 48, 313 (2012)

    Google Scholar 

  29. S. Schwarz, J. Fröhlich, Eur. Phys. J. Special Topics 220, 195 (2013)

    Google Scholar 

  30. R. Mudde, Annu. Rev. Fluid Mech. 37, 393 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Guet, G. Ooms, Annual Rev. Fluid Mech. 38, 225 (2006)

    Article  ADS  Google Scholar 

  32. D. Mazumdar, R. Guthrie, ISIJ Int. 35, 1 (1995)

    Article  Google Scholar 

  33. C. Manning, R. Fruehan, JOM 53, 36 (2001)

    Article  Google Scholar 

  34. P. Lykoudis, Proc. of the 4th Beer-Sheva Seminar, Jerusalem, Israel, AIAA 100, 255 (1985)

    Google Scholar 

  35. I. Michiyoshi, H. Fanakawa, C. Kuramoto, Y. Akita, O. Takahashi, Int. J. Multiphase Flow 3, 445 (1977)

    Article  Google Scholar 

  36. I. Michiyoshi, JSME Int. Journal 32, 483 (1989)

    Google Scholar 

  37. M. Saito, H. Nagae, S. Inoue, Y. Fujii, J. Nucl. Sci. Technol. (1978), p. 476, 729

  38. A. Serizawa, T. Ida, I. Michiyoshi, Int. J. Multiphase Flow 16, 761 (1990)

    Article  MATH  Google Scholar 

  39. G. Fabris, P. Dunn, J. Gawar, E. Pierson, Proc. of the 2nd Beer-Sheva Seminar, (Jerusalem, Israel University Press, 1980), p. 255

  40. P. Gherson, P. Lykoudis, J. Fluid Mech. 147, 81 (1984)

    Article  ADS  Google Scholar 

  41. S. Eckert, G. Gerbeth, O. Lielausis, Int. J. Multiphase Flow 26, 45 (2000)

    Article  MATH  Google Scholar 

  42. C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 575, 57 (2007)

    Article  ADS  MATH  Google Scholar 

  43. C. Zhang, S. Eckert, G. Gerbeth, ISIJ Int. 47, 795 (2007)

    Article  Google Scholar 

  44. Y. Sahai, R. Guthrie, Metall. Trans. B 13B, 193 (1982)

    Article  ADS  Google Scholar 

  45. S. Johansen, D. Robertson, K. Woje, T. Engh, Metall. Trans. B 19B, 745 (1988)

    Article  ADS  Google Scholar 

  46. C. Zhang, S. Eckert, G. Gerbeth, Metall. Mater. Trans. 40B, 700 (2009)

    Google Scholar 

  47. T. Vogt, A. Andruszkiewicz, S. Eckert, K. Eckert, S. Odenbach, G. Gerbeth, Metall. Mater. Trans. 43B, 1454 (2012)

    Google Scholar 

  48. S. Heitkam, W. Drenckhan, J. Fröhlich, Phys. Rev. Lett. 108, 148302 (2012)

    Article  ADS  Google Scholar 

  49. S. Heitkam, S. Schwarz, C. Santarelli, J. Fröhlich, Eur. Phys. J. Special Topics 220, 207 (2013)

    Google Scholar 

  50. F. Fischer, D. Hoppe, E. Schleicher, G. Mattausch, H. Flaske, R. Bartel, U. Hampel, Meas. Sci. Techn. 19, 094002 (2008)

    Article  ADS  Google Scholar 

  51. B. Vowinckel, T. Kempe, J. Fröhlich, V. Nikora, in River Flow, edited by R. Murillo, ISBN 978-0-415-62129-8 (2012), p. 507

  52. K. Koal, J. Stiller, J. Pal, A. Kramer, Eur. Phys. J. Special Topics 220, 111 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fröhlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Schwarz, S., Heitkam, S. et al. Influence of magnetic fields on the behavior of bubbles in liquid metals. Eur. Phys. J. Spec. Top. 220, 167–183 (2013). https://doi.org/10.1140/epjst/e2013-01805-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01805-4

Keywords

Navigation