Skip to main content
Log in

Maximal entropy random walk in community detection

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study en- compasses the use of a stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare the performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as to significant deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fortunato, Phys. Rep. 486, 75 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Burda, J. Duda, J.M. Luck, B. Waclaw, Phys. Rev. Lett. 102, 160602 (2009)

    Article  ADS  Google Scholar 

  3. Z. Burda, J. Duda, J.M. Luck, B. Waclaw, Acta Phys. Pol. B 41, 949 (2010)

    MathSciNet  Google Scholar 

  4. B. Waclaw, Generic Random Walk and Maximal Entropy Random Walk, Wolfram Demonstration Project

  5. J.K. Ochab, Z. Burda, Phys. Rev. E 85, 021145 (2012)

    Article  ADS  Google Scholar 

  6. J.K. Ochab, Stationary States of Maximal Entropy Random Walk and Generic Random Walk on Cayley trees, Wolfram Demonstration Project

  7. J.K. Ochab,Dynamics of Maximal Entropy Random Walk and Generic Random Walk on Cayley trees, Wolfram Demonstration Project

  8. J.K. Ochab, Acta Phys. Pol. B 43, 1143 (2012)

    Article  Google Scholar 

  9. J.H. Hetherington, Phys. Rev. A 30, 2713 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Demetrius, V.M. Gundlach, G. Ochs, Theor. Popul. Biol. 65, 211 (2004)

    Article  MATH  Google Scholar 

  11. L. Demetrius, T. Manke, Phys. A 346, 682 (2005)

    Article  Google Scholar 

  12. V. Zlatic, A. Gabrielli, G. Caldarelli, Phys. Rev. E 82, 066109 (2010)

    Article  ADS  Google Scholar 

  13. J.-C. Delvenne, A.-S. Libert, Phys. Rev. E 83, 046117 (2011)

    Article  ADS  Google Scholar 

  14. R. Sinatra, J. Gómez-Gardeñes, R. Lambiotte, V. Nicosia, V. Latora, Phys. Rev. E 83, 030103 (2011)

    Article  ADS  Google Scholar 

  15. C. Monthus, T. Garel, J. Phys. A: Math. Theor. 44, 085001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Anand, G. Bianconi, S. Severini, Phys. Rev. E 83, 036109 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Parry, Trans. Amer. Math. Soc. 112, 55 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  18. S. White, P. Smyth, KDD ’03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003 (ACM, New York, USA, 2003), p. 266

  19. D. Harel, Y. Koren, FST TCS ’01: Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science (Springer-Verlag, London, UK, 2001), p. 18

  20. M. Latapy, P. Pons, Lect. Notes Comput. Sci. 3733, 284 (2005)

    Article  Google Scholar 

  21. H. Zhou, Phys. Rev. E 67, 061901 (2003)

    Article  ADS  Google Scholar 

  22. H. Zhou, Phys. Rev. E 67, 041908 (2003)

    Article  ADS  Google Scholar 

  23. H. Zhou, R. Lipowsky, Lect. Notes Comput. Sci. 3038, 1062 (2004)

    Article  Google Scholar 

  24. J.G. Kemeny, J.L. Snell, Finite Markov Chains (Springer Verlag, New York, 1976)

  25. C.M. Grinstead, J.L. Snell, Introduction to Probability (American Mathematical Society, Providence, RI, 1997)

  26. J.K. Ochab, Phys. Rev. E 86, 066109 (2012)

    Article  ADS  Google Scholar 

  27. L. Donetti, M.A. Munoz, J. Stat. Mech., P10012 (2004)

  28. K.A. Eriksen, I. Simonsen, S. Maslov, K. Sneppen, Phys. Rev. Lett. 90, 148701 (2003)

    Article  ADS  Google Scholar 

  29. I. Simonsen, Phys. A 357, 317 (2005)

    Article  MathSciNet  Google Scholar 

  30. J. Shi, J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 22, 888 (2000)

    Article  Google Scholar 

  31. M. Meila, J. Shi, AI and STATISTICS (AISTATS) (2001)

  32. A. Capocci, V.D.P. Servedio, G. Caldarelli, F. Colaiori, Phys. A 352, 669 (2005)

    Article  Google Scholar 

  33. E. Estrada, N. Hatano, Phys. Rev. E 77, 036111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Estrada, N. Hatano, Appl. Math. Comput. 214, 500 (2009)

    Article  MATH  Google Scholar 

  35. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  36. A. Lancichinetti, S. Fortunato, F. Radicchi, Phys. Rev. E 78, 046110 (2008)

    Article  ADS  Google Scholar 

  37. A. Lancichinetti, S. Fortunato, Phys. Rev. E 80, 056117 (2009)

    Article  ADS  Google Scholar 

  38. L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, J. Stat. Mech.: Theory Exp., P09008 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J.K. Ochab or Z. Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochab, J., Burda, Z. Maximal entropy random walk in community detection. Eur. Phys. J. Spec. Top. 216, 73–81 (2013). https://doi.org/10.1140/epjst/e2013-01730-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01730-6

Keywords

Navigation