Skip to main content

Advertisement

Log in

Neutrons and model membranes

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.Mouritsen, Life as a Matter of Fat (Springer-Verlag, 2005)

  2. G.Fragneto, M.Rheinstadter, C.R. Physique 8, 865 (2007)

    Article  ADS  Google Scholar 

  3. E.Gorter, F.Grendel, J. Exp. Medicine 41, 439 (1925)

    Article  Google Scholar 

  4. J.F.Danielli, H.Davson, J. Cell. Comp. Phys. 5, 495 (1935)

    Article  Google Scholar 

  5. S.J.Singer, G.L. Nicolson Science 175, 720 (1972)

    Google Scholar 

  6. J.N.Israelachvili, in Light Transducing Membranes: Structure, Function and Evolution, edited by D.W.Deamer (Academic Press, New York, 1978), p. 91

  7. E.Sackmann, in The Structure and Dynamics of Membranes, in Handbook of Biological Physics, edited by LipowskyR. and SackmannE., Vol. 1 (Elsevier, Amsterdam, 1995), p. 1

  8. D.Lingwood, K.Simons, Science 327, 46 (2010)

    Article  ADS  Google Scholar 

  9. L.Mitch, Science 334, 1046 (2011)

    Google Scholar 

  10. O.Mouritsen, O.Andersen, 1998, In search of a new biomembrane model, Biologiske Skrifter 49, The Royal Danish Academy of Sciences and Letters(Copenhagen)

  11. R.Lipowsky, E.Sackmann, E. Handbook of Biological Physics (1995)

  12. M.Born, E.Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (New York: Pergamon Press, 1989)

  13. J.Pencer, V.N.P.Anghel, N.Kucerka Norbert, et al., J. Appl. Crystal. 39, 791 (2006)

    Article  Google Scholar 

  14. V.N.P.Anghel Vinicius, N.Kucerka, J.Pencer, et al., J. Appl. Crystal. 40, 513 (2007)

    Article  Google Scholar 

  15. J.Pencer, V.N.P.Anghel, N.Kucerka Norbert, et al., J. Appl. Crystal. 40, 771 (2007)

    Article  Google Scholar 

  16. A.Tardieu, V.Luzzati, F.C.Reman, J. Mol. Biol. 75, 711 (1973)

    Article  Google Scholar 

  17. J.Katsaras, Biophys. J. 75, 2157 (1998)

    Article  ADS  Google Scholar 

  18. M.Vogel, C.Munster, W.Fenzl, T.Salditt, Phys. Rev. Lett. 84, 390 (2000)

    Article  ADS  Google Scholar 

  19. L.Ding, T.M.Weiss, G.Fragneto, W.Liu, L.Yang, H.W. Huang Langmuir 21, 203 (2005)

    Google Scholar 

  20. E.Del Favero, A.Raudino, P.Brocca, S.Motta, G.Fragneto, M.Corti, L.Cantú, Langmuir 25, 4190 (2009)

    Article  Google Scholar 

  21. G.L.Gaines, Insoluble monolayers at liquid-gas interface (Interscience publishers, New York, 1966)

  22. M.Bauer, T.Charitat, C.Fajolles, G.Fragneto, J.Daillant, Soft Matter 8, 942 (2012)

    Article  ADS  Google Scholar 

  23. L.Tamm, H. McConnell Biophys. J. 47, 105 (1985)

    Article  Google Scholar 

  24. J.Chen, R.Köhler, T.Gutberlet, H.Möhwald, R.Krastev, Soft Matter 5, 228 (2009)

    Article  ADS  Google Scholar 

  25. T.Charitat, E.Bellet-Amalric, G.Fragneto, F.Graner, Eur. Phys. J. B 8, 583 (1999)

    Article  ADS  Google Scholar 

  26. A.V.Hughes, A.Goldar, M.C.Gerstenberg, S. J.Roser, J.Bradshaw, Phys. Chem. Chem. Phys. 4, 2371 (2002)

    Article  Google Scholar 

  27. R.J.El-khouri, D.A.Bricarello, E.B.Watkins, C.Y.Kim, C.E.Miller, T.E.Patten, A.N.Parikh, T.L.Kuhl, Nano Lett. 11, 2169 (2011)

    Article  ADS  Google Scholar 

  28. D.J.McGillivray, G.Valincius, F.Heinrich, J.W.F.Robertson, D.J.Vanderah, W.Febo-Ayala, et al., Biophys J. 96, 1547 (2009)

    Article  ADS  Google Scholar 

  29. H.P.Wacklin, Curr. Opinion Coll. Interf. Sci. 15, 445 (2010)

    Article  Google Scholar 

  30. S.J.Johnson, T.M.Bayerl, D.C.McDermott, G.W.Adam, A.R.Rennie, R.K.Thomas, E.Sackmann, Biophys. J. 59, 289 (1991)

    Article  Google Scholar 

  31. S.Krueger, C.W.Meuse, C.F.Majkrzak, et al., Langmuir 17, 511 (2000)

    Article  Google Scholar 

  32. A.Chenal, L.Prongidi-Fix, A.Perier, C.Aisenbrey, G.Vernier, S.Lambotte, M.Haertlein, M.-T.Dauvergne, G.Fragneto, B.Bechinger, D.Gillet, V.Forge, M.Ferrand, J. Mol. Biol. 391, 872 (2009)

    Article  Google Scholar 

  33. A.Merlino, G.Vitiello, M.Grimaldi, F.Sica, E.Busi, R.Basosi, A.M.D’Ursi, G.Fragneto, L.Paduano, G.D’Errico, J. Phys. Chem. B 116, 401 (2012)

    Article  Google Scholar 

  34. G.Fragneto, T.Charitat, E.Bellet-Amalric, R.Cubitt, F.Graner, Langmuir 19, 7695 (2003)

    Article  Google Scholar 

  35. J.Daillant, E.Bellet-Amalric, A.Braslau, T.Charitat, G.Fragneto, F.Graner, S.Mora, F.Rieutord, B.Stidder, Proc. Nat. Acad. Sci. 102, 11639 (2005)

    Article  ADS  Google Scholar 

  36. P.Brocca, L.Cantù, M.Corti, E.Del Favero, S.Motta, Langmuir 20, 2141 (2004)

    Article  Google Scholar 

  37. V.Rondelli, G.Fragneto, S.Motta, E.Del Favero, L.Cantù, J. Phys. Conf. Series 340, 012083 (2012)

    Article  ADS  Google Scholar 

  38. S.Garg, L.Porcar, A.C.Woodka, P.D.Butler, U.Perez-Salas, Biophys. J. 101, 1 (2011)

    Article  Google Scholar 

  39. R.Cubitt, G.Fragneto, Appl. Phys. A 74, S329 (2002)

    Article  ADS  Google Scholar 

  40. C.L.Armstrong, M.Barrett, L.Toppozini, Z.Yamani, N.Kucerka, J.Katsaras, G.Fragneto, M.C.Rheinstädter, Soft Matter 8, 4687 (2012)

    Article  ADS  Google Scholar 

  41. J.A.Killian, T.K.M.Nyholm, Curr. Opin. Struct. Biol. 16, 473 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragneto, G. Neutrons and model membranes. Eur. Phys. J. Spec. Top. 213, 327–342 (2012). https://doi.org/10.1140/epjst/e2012-01680-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01680-5

Keywords

Navigation