Skip to main content
Log in

Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Schulz, G.Ódor, G.Ódor, M.F.Nagy, Comp. Phys. Comm. 182, 1467 (2011)

    Article  ADS  Google Scholar 

  2. J.M.Burgers, The Nonlinear Diffusion Equation (Riedel, Boston 1974)

  3. D.Forster, Phys. Rev. A 16, 732 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  4. A.L.Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

  5. T.Halpin-Healy, Y.-C.Zhang, Phys. Rep. 254, 215 (1995)

    Article  ADS  Google Scholar 

  6. J.Krug, Adv. Phys. 46, 139 (1997)

    Article  ADS  Google Scholar 

  7. M.Kardar, Phys. Rev. Lett. 55, 2923 (1985)

    Article  ADS  Google Scholar 

  8. H.K.Janssen, B.Schmittmann, Z. Phys. B 63, 517 (1986)

    Article  ADS  Google Scholar 

  9. H.van Beijeren, R.Kutner, H.Spohn, Phys. Rev. Lett. 54, 2056 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  10. T.Hwa, Phys. Rev. Lett. 69, 1552 (1992)

    Article  ADS  Google Scholar 

  11. M.Kardar, Nucl. Phys. B 290, 582 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  12. H.Rost, Z. Wahrsch. Verw. Gebiete 58, 41 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G.Ódor, Universality In Nonequilibrium Lattice Systems (World Scientific, 2008)

  14. M.Schwartz, S.F.Edwards, Europhys. Lett. 20, 301 (1992)

    Article  ADS  Google Scholar 

  15. E.Frey, U.C.Täuber, Phys. Rev. E 50, 1024 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  16. M.Lässig, Nucl. Phys. B 448, 559 (1995)

    Article  ADS  Google Scholar 

  17. B.M.Forrest, L.H.Tang, Phys. Rev. Lett. 64, 1405 (1990)

    Article  ADS  Google Scholar 

  18. E.Marinari, A.Pagnani, G.Parisi, J. Phys. A 33, 8181 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E.Marinari, A.Pagnani, G.Parisi, Z.Rácz, Phys. Rev. E 65, 026136 (2002)

    Article  ADS  Google Scholar 

  20. H.C.Fogedby, Phys. Rev. Lett. 94, 195702 (2005)

    Article  ADS  Google Scholar 

  21. L.Canet, H.Chat, B.Delamotte, N.Wschebor, Phys. Rev. E 84, 061128 (2011)

    Article  ADS  Google Scholar 

  22. F.D.A.AaraoReis, Phys. Rev. E 72, 0322601 (2005)

    Google Scholar 

  23. G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 79, 021125 (2009)

    Article  ADS  Google Scholar 

  24. G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 81, 031112 (2010)

    Article  ADS  Google Scholar 

  25. M.Plischke, Z.Rácz, D.Liu, Phys. Rev. B 35, 3485 (1987)

    Article  ADS  Google Scholar 

  26. P.Meakin, P.Ramanlal, L.M.Sander, R.C. Ball, Phys. Rev. A 34, 5091 (1986)

    Article  ADS  Google Scholar 

  27. S.Wolfram, Rev. Mod. Phys. 55, 601 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M.Barma, M.D.Grynberg, R.B.Stinchcombe, J. Phys.: Condens. Matter 19, 065112 (2007)

    Article  ADS  Google Scholar 

  29. J.Kelling, G.Ódor, Phys. Rev. E 84, 061150 (2011)

    Article  ADS  Google Scholar 

  30. K.-H.Heinig, T.Müller, B.Schmidt, M.Strobel, W.Möller, Appl. Phys. A 77, 17 (2003)

    Article  ADS  Google Scholar 

  31. L.Röntzsch, Ph.D. thesis (2007)

  32. B.Liedke, Ph.D. thesis (2011)

  33. M.Strobel, Ph.D. thesis (1999)

  34. T.Müller, Ph.D. thesis (2005)

  35. J.Kelling, Diploma thesis (2012)

  36. K.Kawasaki, Phys. Rev. 145, 224 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  37. N.Metropolis, et al., J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  38. S.Wolfram, A New Kind of Science (2002)

  39. G.Ódor, B.Liedke, K.-H.Heinig, Phys. Rev. E 81, 051114 (2010)

    Article  ADS  Google Scholar 

  40. G.Ódor, B.Liedke, K.-H.Heinig, J.Kelling, Appl. Surf. Sci. 258, 4186 (2012)

    Article  ADS  Google Scholar 

  41. T.Preis, et al., J. Comp. Phys. 228, 4468 (2009)

    Article  ADS  MATH  Google Scholar 

  42. M.Weigel, J. Comput. Phys. 231, 3064 (2012)

    Article  ADS  MATH  Google Scholar 

  43. M.Matsumoto, et al., J. Univ. Comp. Sci. 12, 672 (2006)

    Google Scholar 

  44. TinyMT website http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/TINYMT/index.html

  45. M.Henkel, J.D.Noh, M.Pleimling, Phys. Rev. E 85, 030102(R) (2012)

    Article  ADS  Google Scholar 

  46. Y.Shim, J.G.Amar, Phys. Rev. B 71, APS, 125432 (2005)

    Article  ADS  Google Scholar 

  47. M.E.J.Newman, G.T.Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)

  48. V.Rosato, M.Guillope, B.Legrand, Phil. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelling, J., Ódor, G., Nagy, M.F. et al. Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model. Eur. Phys. J. Spec. Top. 210, 175–187 (2012). https://doi.org/10.1140/epjst/e2012-01645-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01645-8

Keywords

Navigation