Skip to main content
Log in

Coarse-graining stiff bonds

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The method of constraints in molecular dynamics is useful because it avoids the resolution of high frequency motions with very small time steps. However, the price to pay is that both the dynamics and the statistics of a constrained system differ from those of the unconstrained one. Instead of using constraints, we propose to dispose of high frequency motions by a coarse-graining procedure in which fast variables are eliminated. These fast variables are thus modeled as friction and thermal fluctuations. We illustrate the methodology with a simple model case, a diatomic molecule in a monoatomic solvent, in which the bond between the atoms of a diatomic molecule is stiff. Although the example is very simple and does not display the interesting effects of “wrong” statistics of the constrained system (i.e. the well-known issue connected to the Fixman potential), it is well suited to give the proof of concept of the whole procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Tuckerman, G.J. Martyna, B.J. Berne, J. Chem. Phys. 97, 1990 (1992)

    Article  ADS  Google Scholar 

  2. T.C. Bishop, R.D. Skeel, K. Schulten, J. Comp. Chem. 18, 1785 (1997)

    Article  Google Scholar 

  3. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comp. Phys. 23, 277 (1977)

    Article  ADS  Google Scholar 

  4. J.P. Ryckaert, G. Ciccotti, J. Chem. Phys. 78, 7368 (1983)

    Article  ADS  Google Scholar 

  5. M. Fixman, Proceedings of the National Academy of Sciences of the United States of America 71, 3050 (1974)

    Article  ADS  Google Scholar 

  6. E. Helfand, J. Chem. Phys. 71, 5000 (1979)

    Article  ADS  Google Scholar 

  7. N.G. Van Kampen, Applied Scientific Research 37, 67 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Reich, Num. Algorithm 19, 213 (1998)

    Article  MATH  ADS  Google Scholar 

  9. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    Article  MATH  ADS  Google Scholar 

  10. R. Zwanzig, Phys. Rev. 124, 983 (1961)

    Article  MATH  ADS  Google Scholar 

  11. H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer Verlag, Berlin, 1982)

  12. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1972)

  13. C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010)

    Article  ADS  Google Scholar 

  14. E.P.V. Klaveren, J.P.J. Michels, J.A. Schouten, Molecular Physics 96, 1613 (1999)

    Article  ADS  Google Scholar 

  15. J. Barojas, D. Levesque, B. Quentrec, Phys. Rev. A 7, 1092 (1973)

    Article  ADS  Google Scholar 

  16. E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Español.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Español, P., de la Torre, J.A., Ferrario, M. et al. Coarse-graining stiff bonds. Eur. Phys. J. Spec. Top. 200, 107–129 (2011). https://doi.org/10.1140/epjst/e2011-01521-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01521-1

Keywords

Navigation