Skip to main content
Log in

Creep, relaxation and viscosity properties for basic fractional models in rheology

  • Modelling
  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The purpose of this paper is twofold: from one side we provide a general survey to the viscoelastic models constructed via fractional calculus and from the other side we intend to analyze the basic fractional models as far as their creep, relaxation and viscosity properties are considered. The basic models are those that generalize via derivatives of fractional order the classical mechanical models characterized by two, three and four parameters, that we refer to as Kelvin–Voigt, Maxwell, Zener, anti–Zener and Burgers. For each fractional model we provide plots of the creep compliance, relaxation modulus and effective viscosity in non dimensional form in terms of a suitable time scale for different values of the order of fractional derivative. We also discuss the role of the order of fractional derivative in modifying the properties of the classical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Bagley, Frac. Cal. Appl. Anal. 10, 123 (2007)

    MathSciNet  MATH  Google Scholar 

  2. R.B. Bird, J.M. Wiest, Ann. Rev. Fluid Mechan. 27, 169 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. D.R. Bland, The Theory of Linear Viscoelasticity (Pergamon, Oxford, 1960)

  4. V. Cannelli, D. Melini, A. Piersanti, Ann. Geophys. 53, 89 (2010)

    Google Scholar 

  5. M. Caputo, J.R. Astr. Soc. 13, 529 (1967) [Reprinted in Fract. Calc. Appl. Anal. 11, 4 (2008)

    MathSciNet  Google Scholar 

  6. M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969) [in Italian]

  7. M. Caputo, F. Mainardi, Pure Appl. Geophys. (PAGEOPH) 91, 134 (1971a) [Reprinted in Fract. Calc. Appl. Analy. 10, 309 (2007)

    MathSciNet  MATH  Google Scholar 

  8. M. Caputo, F. Mainardi, Riv. Nuovo Cimento (Ser. II) 1, 161 (1971b)

    Article  ADS  Google Scholar 

  9. J.M. Carcione, Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic and Porous Media, 2nd edn. (Elsevier, Amsterdam, 2007)

  10. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer Verlag, Berlin, 1974)

  11. W.N. Findley, J.S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity (North-Holland, Amsterdam, 1976)

  12. I.M. Gel’fand, G.E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964)

  13. C. Giunchi, G. Spada, Geophys. Res. Lett. 27, 2065 (2000)

    Article  ADS  Google Scholar 

  14. R. Gorenflo, J. Loutchko, Yu. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)

    MathSciNet  MATH  Google Scholar 

  15. R. Gorenflo, J. Loutchko, Yu. Luchko, Corrections Fract. Calc. Appl. Anal. 6, 111 (2003)

    MathSciNet  Google Scholar 

  16. R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997), p. 223 [E-print: http://arxiv.org/abs/0805.3823]

  17. N. Heymans, I. Podlubny, Rheol. Acta. 45, 765 (2006)

    Article  Google Scholar 

  18. H. Jeffreys, The Earth, 1st edn., §14.423 (Cambridge University Press, Cambridge, 1924), p. 224

  19. H. Jeffreys, The Earth, 5th edn., §8.13 (Cambridge University Press, Cambridge, 1970), p. 321

  20. H. Jeffreys, Geophys. J. Roy. Astr. Soc. 1, 92 (1958)

    Article  Google Scholar 

  21. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

  22. Y. Klausner, Fundamentals of Continuum Mechanics of Soils (Springer Verlag, Berlin, 1991)

  23. M. Körnig, G. Müller, Geophys. J. Int. 98, 243 (1989)

    Article  ADS  Google Scholar 

  24. C.P. Li, Z.G. Zhao, Eur. Phys. J. Special Topics 193, 5 (2011)

    Article  ADS  Google Scholar 

  25. J.G. Liu, M.Y. Xu, Mech. Time-Depend. Mater. 10, 263 (2006)

    Article  ADS  Google Scholar 

  26. F. Mainardi, R. Gorenflo, Fract. Calc. Appl. Anal. 10, 269 (2007) [E-print: http://arxiv.org/abs/0801.4914]

    MathSciNet  MATH  Google Scholar 

  27. F. Mainardi, in Proceedings the 1-st IFAC Workshop on Fractional Differentiation and its applications (FDA’04), edited by A. Le Méhauté, J.A. Tenreiro Machado, J.C. Trigeassou, J. Sabatier (ENSEIRB, Bordeaux (France), 19–21 July 2004), p. 62

  28. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press–World Scientific, London, 2010)

  29. F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, [E-print http://arxiv.org/abs/1007.2959]

  30. D. Melini, V. Cannelli, A. Piersanti, G. Spada, Geophys. J. Int. 174, 672 (2008)

    Article  ADS  Google Scholar 

  31. D. Melini, G. Spada, A. Piersanti, Geophys. J. Int. 180, 88 (2010)

    Article  ADS  Google Scholar 

  32. G. Müller, Geophys. J. R. Astr. Soc. 87, 1113 (1986)

    Article  Google Scholar 

  33. G. Müller, Erratum, Geophys. J. R. Astr. Soc. 91, 1135 (1987)

    Article  Google Scholar 

  34. K.D. Papoulia, V.P. Panoskaltsis, N.V. Kurup, I. Korovajchuk, Rheol. Acta 49, 381 (2010)

    Article  Google Scholar 

  35. A.C. Pipkin, Lectures on Viscoelastic Theory, 2nd edn. (Springer Verlag, New York, 1986)

  36. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  37. G.M. Scott-Blair, Survey of General and Applied Rheology (Pitman, London, 1949)

  38. G. Spada, ALMA, Comp. Geosci. 34, 667 (2008)

    Article  Google Scholar 

  39. G. Spada, L. Boschi, Geophys. J. Int. 166, 309 (2006)

    Article  ADS  Google Scholar 

  40. Spada G., Colleoni F., Ruggieri G., Tectonophysics (in press) (2010), doi:10.1016/j.tecto.2009.12.020

  41. D. Verotta, J. Phamacokinet. Pharmacodyn. 37, 209 (2010)

    Article  Google Scholar 

  42. D. Verotta, J. Pharmacokinet. Pharmacodyn. 37, 257 (2010)

    Article  Google Scholar 

  43. P. Wessel, W.H.F. Smith, Eos Trans. Amer. Geophys. Union 79, 579 (1998)

    Article  ADS  Google Scholar 

  44. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mainardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainardi, F., Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193, 133–160 (2011). https://doi.org/10.1140/epjst/e2011-01387-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01387-1

Keywords

Navigation