Skip to main content
Log in

Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study statistical properties, response dynamics, and information transmission in a Hodgkin-Huxley–type neuron system, modeling peripheral electroreceptors in paddlefish. In addition to sodium and potassium currents, the neuron model includes fast calcium and slow afterhyperpolarization (AHP) potassium currents. The synaptic transmission from sensory epithelium is modeled by a Poission process with a rate modulated by narrow-band noise, mimicking stochastic epithelial oscillations observed experimentally. We study how the interplay of parameters of AHP current and synaptic noise affects the statistics of spontaneous dynamics and response properties of the system. In particular, we confirm predictions made earlier with perfect integrate and fire and phase neuron models that epithelial oscillations enhance stimulus–response coherence and thus information transmission in electroreceptor system. In addition, we consider a strong stimulus regime and show that coherent epithelial oscillations may reduce variability of electroreceptor responses to time-varying stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Crawford, R. Fettiplace, J. Physiol. 306, 79 (1980)

    Google Scholar 

  2. G.A. Manley, Naturwissenschaften 66, 582 (1979)

    Article  ADS  Google Scholar 

  3. J.M. Goldberg, Exp. Brain Res. 130, 277 (2000)

    Article  Google Scholar 

  4. S.G. Sadeghi, M.J. Chacron, M.C. Taylor, K.E. Cullen, J. Neurosci. 27, 771 (2007)

    Article  Google Scholar 

  5. R. Fettiplace, A. Crawford, Hear. Res. 2, 447 (1980)

    Article  Google Scholar 

  6. A. Hudspeth, R. Lewis, J. Physiol. 400, 275 (1988)

    Google Scholar 

  7. L. Catacuzzeno, B. Fioretti, P. Perin, F. Franciolini, J. Physiol. 561, 685 (2004)

    Article  Google Scholar 

  8. F. Jorgensen, A. Kroese, Acta Physiol. Scand. 185, 271 (2005)

    Article  Google Scholar 

  9. M.A. Rutherford, W.M. Roberts, J. Neurosci. 29, 10025 (2009)

    Article  Google Scholar 

  10. G.A. Manley, Hear. Res. 255, 58 (2009)

    Article  Google Scholar 

  11. P. Martin, D. Bozovic, Y. Choe, A. Hudspeth, J. Neurosci. 23, 4533 (2003)

    Google Scholar 

  12. P. Martin, A. Hudspeth, Proc. Natl. Acad. Sci. USA 96, 14306 (1999)

    Article  ADS  Google Scholar 

  13. P. Martin, A. Hudspeth, F. Jülicher, Proc. Natl. Acad. Sci. USA 98, 14380 (2001)

    Article  ADS  Google Scholar 

  14. A. Neiman, D. Russell, J. Neurophysiol. 92, 492 (2004)

    Article  Google Scholar 

  15. A.B. Neiman, T.A. Yakusheva, D.F. Russell, J. Neurophysiol. 98, 2795 (2007)

    Article  Google Scholar 

  16. L. Schimansky-Geier, C. Zülicke, Z. Phys. B Con. Mat. 79, 451 (1990)

    Article  ADS  Google Scholar 

  17. R. Ratnam, M. Nelson, J. Neurosci. 20, 6672 (2000)

    Google Scholar 

  18. M.J. Chacron, A. Longtin, L. Maler, J. Neurosci. 21, 5328 (2001)

    Google Scholar 

  19. M. Chacron, B. Lindner, A. Longtin, Phys. Rev. Lett. 92, 080601 (2004)

    Article  ADS  Google Scholar 

  20. M. Chacron, L. Maler, J. Bastian, Nature Neurosci. 8, 673 (2005)

    Article  Google Scholar 

  21. M. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grun, S. Rotter, Neurocomputing 70, 1717 (2007)

    Article  Google Scholar 

  22. B. Lindner, M. Chacron, A. Longtin, Phys. Rev. E 72, 021911 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Neiman, D. Russell, Phys. Rev. E 71, 061915 (2005)

    Article  ADS  Google Scholar 

  24. I. Fuwape, A.B. Neiman, Phys. Rev. E 78, 051922 (2008)

    Article  ADS  Google Scholar 

  25. T.A. Engel, B. Helbig, D.F. Russell, L. Schimansky-Geier, A.B. Neiman, Phys. Rev. E 80, 021919 (2009)

    Article  ADS  Google Scholar 

  26. S. Liepelt, J.A. Freund, L. Schimansky-Geier, A. Neiman, D.F. Russell, J. Theor. Biol. 237, 30 (2005)

    Article  MathSciNet  Google Scholar 

  27. X. Wang, J. Neurophysiol. 79, 1549 (1998)

    Google Scholar 

  28. B. Ermentrout, Neural Comp. 10, 1721 (1998)

    Article  Google Scholar 

  29. R.A. Eatock, J. Xue, R. Kalluri, J. Exp. Biol. 211, 1764 (2008)

    Article  Google Scholar 

  30. C.E. Smith, J.M. Goldberg, Biol. Cybern. 54, 41 (1986)

    Article  Google Scholar 

  31. Y. Liu, X. Wang, J. Comput. Neurosci. 10, 25 (2001)

    Article  Google Scholar 

  32. F. Gabbiani, C. Koch, in Computational Neuroscience, edited by C.Koch, I.Segev, 2nd edn. (MIT Press, Cambridge, Mass, 1998), p. 313

  33. J.C. Roddey, B. Girish, J.P. Miller, J. Comput. Neurosci. 8, 95 (2000)

    Article  MATH  Google Scholar 

  34. M.J. Chacron, J. Neurophysiol. 95, 2933 (2006)

    Article  Google Scholar 

  35. J. Lu, H. Fishman, Biophys. J. 69, 2458 (1995)

    Article  ADS  Google Scholar 

  36. W. Clusin, M. Bennett, J. Gen. Physiol. 73, 685 (1979)

    Article  Google Scholar 

  37. A.B. Neiman, D.F. Russell, Phys. Rev. Lett. 88, 138103 (2002)

    Article  ADS  Google Scholar 

  38. A. Borst, F. Theunissen, Nature Neurosci. 2, 947 (1999)

    Article  Google Scholar 

  39. M. Chacron, B. Lindner, A. Longtin, J. Comput. Neurosci. 23, 301 (2007)

    Article  MathSciNet  Google Scholar 

  40. B. Lindner, Phys. Rev. E 69, 022901 (2004)

    Article  ADS  Google Scholar 

  41. J.W. Middleton, M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. E 68, 021920 (2003)

    Article  ADS  Google Scholar 

  42. T. Schwalger, L. Schimansky-Geier, Phys. Rev. E 77, 031914 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.B. Neiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H., Neiman, A. Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise. Eur. Phys. J. Spec. Top. 187, 179–187 (2010). https://doi.org/10.1140/epjst/e2010-01282-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01282-3

Keywords

Navigation