Skip to main content
Log in

Flux periodicities in loops and junctions with d-wave superconductors

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The magnetic flux periodicity in superconducting loops is reviewed. Whereas quantization of the magnetic flux with hc/2e prevails in sufficiently thick loops with current free interior, the supercurrent in narrow loops is either hc/2e- or hc/e-periodic with the external magnetic flux. The periodicity depends on the properties of the condensate state, in particular on the Doppler shift of the energy spectrum. For an s-wave superconductor in a loop with diameter larger than the coherence length ξ0, the Doppler shift is small with respect to the energy gap, and the hc/2e-periodic behavior of its flux dependent thermodynamic properties is maintained. However, for smaller s-wave loops and, more prominently, narrow d-wave loops of any diameter R, the Doppler shift has a strong effect on the supercurrent carrying state; as a consequence, the fundamental flux periodicity is in fact hc/e. It is shown analytically and numerically that the hc/e-periodic component in the supercurrent decays only algebraically as 1/R for large d-wave loops. For nodal superconductors the discrete nature of the eigenergies close to the Fermi energy has to be respected in the evaluation of the Doppler shift. Furthermore, we investigate, whether the Doppler shift modifies the supercurrent through Josephson junctions with d-wave superconductors. For transparent junctions, the Josephson current behaves similar to the persistent supercurrent in a loop. These distinct physical phenomena can be compared, if the magnetic flux Φ = φ ⋅ hc/e is identified with the phase variation of the order parameter δϕ through 2πφ = δϕ/2. Correspondingly, the Josephson current can display a 4π-periodicity in δϕ, if the Doppler shift is sufficiently strong which is true for transparent junctions of d-wave superconductors. Moreover, a 4π-periodicity is also valid for the current-flux relation of field-threaded junctions. In the tunneling regime the microscopic theory reproduces the results of the Ginzburg-Landau description for sufficiently wide Josephson junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ehrenberg, R.E. Siday, Proc. Phys. Soc. B 62, 8 (1949)

    Article  ADS  Google Scholar 

  2. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. F. London, Superfluids (John Wiley & Sons, New York, 1950)

  4. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. R. Doll, M. Näbauer, Phys. Rev. Lett. 7, 51 (1961)

    Article  ADS  Google Scholar 

  6. B.S. Deaver, W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  7. A.A. Abrikosov, Soviet Physics – JETP 5, 1174 (1957)

    Google Scholar 

  8. U. Essmann, H. Träuble, Phys. Lett. A 24, 526 (1967)

    Article  ADS  Google Scholar 

  9. L. Onsager, Phys. Rev. Lett. 7, 50 (1961)

    Article  ADS  Google Scholar 

  10. N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  11. W. Brenig, Phys. Rev. Lett. 7, 337 (1961)

    Article  ADS  Google Scholar 

  12. J.R. Schrieffer, Theory of Superconductivity, chapter 8 (Addison Wesley, 1964)

  13. F. Loder, A.P. Kampf, T. Kopp, J. Mannhart, C. Schneider, Yu. S. Barash, Nature Phys. 4, 112 (2008)

    Article  ADS  Google Scholar 

  14. F. Loder, A.P. Kampf, T. Kopp, Phys. Rev. B 78, 174526 (2008)

    Article  ADS  Google Scholar 

  15. V. Juričić, I.F. Herbut, Z. Tešanović, Phys. Rev. Lett. 100, 187006 (2008)

    Article  ADS  Google Scholar 

  16. Yu.S. Barash, Phys. Rev. Lett. 100, 177003 (2008)

    Article  ADS  Google Scholar 

  17. S. Washburn, R.A. Webb, Rep. Prog. Phys. 55, 1311 (1992)

    Article  ADS  Google Scholar 

  18. R.M. Fye, M.J. Martins, D.J. Scalapino, J. Wagner, W. Hanke, Phys. Rev. B 44, 6909 (1991)

    Article  ADS  Google Scholar 

  19. R.M. Fye, M.J. Martins, D.J. Scalapino, J. Wagner, W. Hanke, Phys. Rev. B 45, 7311 (1992)

    Article  ADS  Google Scholar 

  20. S.V. Sharov, A.D. Zaikin, Phys. Rev. B 71, 014518 (2005)

    Article  ADS  Google Scholar 

  21. X. Waintal, G. Fleury, K. Kazymyrenko, M. Houzet, P. Schmitteckert, D. Weinmann, Phys. Rev. Lett. 101, 106804 (2008)

    Article  ADS  Google Scholar 

  22. V.P. Mineev, K.V. Samokhin, Introduction to Unconventional Superconductivity, chapters 5, 8, and 17 (Gordon and Breach Science Publishers, 1999)

  23. F. Loder, A.P. Kampf, T. Kopp, Phys. Rev. B 81, 020511(R) (2010)

  24. K. Czajka, M.M. Maśka, M. Mierzejewski, Z. Śledź, Phys. Rev. B 72, 035320 (2005)

    Article  ADS  Google Scholar 

  25. D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)

    Article  ADS  Google Scholar 

  26. C.J. Pethick, H. Smith, Annals of Physics 119, 133 (1979)

    Article  ADS  Google Scholar 

  27. M. Tinkham, Superconductivity, chapters 3 and 6 (McGraw-Hill Internation Editions, 1996)

  28. F. von Oppen, E.K. Riedel, Phys. Rev. B 46, 3203 (1992)

    Article  ADS  Google Scholar 

  29. I. Khavkine, H.-Y. Kee, K. Maki, Phys. Rev. B 70, 184521 (2004)

    Article  ADS  Google Scholar 

  30. W.A. Little, R.D. Parks, Phys. Rev. Lett. 9, 9 (1962)

    Article  ADS  Google Scholar 

  31. R.D. Parks, W.A. Little, Phys. Rev. 133, A97 (1964)

    Article  ADS  Google Scholar 

  32. G.-Q. Zha, M.V. Milošević, S.-P. Zhou, F.M. Peeters, Phys. Rev. B 80, 144501 (2009)

    Article  ADS  Google Scholar 

  33. P.I. Soininen, C. Kallin, A.J. Berlinsky, Phys. Rev. B 50, 13883 (1994)

    Article  ADS  Google Scholar 

  34. Y. Wang, A.H. MacDonald, Phys. Rev. B 55, R3876 (1995)

    Article  ADS  Google Scholar 

  35. J.-X. Zhu, T.K. Lee, C.S. Ting, C.-R. Hu, Phys. Rev. B 61, 8667 (2000)

    Article  ADS  Google Scholar 

  36. J.-X. Zhu, C.S. Ting, Phys. Rev. Lett. 87, 147002 (2001)

    Article  ADS  Google Scholar 

  37. A. Ghosal, C. Kallin, A.J. Berlinsky, Phys. Rev. B 66, 214502 (2002)

    Article  ADS  Google Scholar 

  38. Y. Chen, Z.D. Wang, C.S. Ting, Phys. Rev. B 67, 220501 (2003)

    Article  ADS  Google Scholar 

  39. M. Franz, C. Kallin, A.J. Berlinsky, Phys. Rev. B 54, R6897 (1996)

    Article  ADS  Google Scholar 

  40. P.F. Bagwell, Phys. Rev. B 49, 6841 (1994)

    Article  ADS  Google Scholar 

  41. F. Loder, A.P. Kampf, T. Kopp, J. Mannhart, New J. Phys. 11, 075005 (2009)

    Article  ADS  Google Scholar 

  42. D.B. Josephson, Phys. Lett. 1, 251 (1962)

    Article  MATH  ADS  Google Scholar 

  43. A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004)

    Article  ADS  Google Scholar 

  44. P.G. de Gennes, Superconductivity of Metals and Alloys, chapter 5 (Addison Wesley, 1966)

  45. B.M. Andersen, I.V. Bobkova, P.J. Hirschfeld, Yu.S. Barash, Phys. Rev. B 72, 184510 (2005)

    Article  ADS  Google Scholar 

  46. B.M. Andersen, I.V. Bobkova, P.J. Hirschfeld, Yu.S. Barash, Phys. Rev. Lett. 96, 117005 (2006)

    Article  ADS  Google Scholar 

  47. J. Cayssol, T. Kontos, G. Montambaux, Phys. Rev. B 67, 184508 (2003)

    Article  ADS  Google Scholar 

  48. A.S. Mel’nikov, Phys. Rev. Lett. 86, 4108 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.P. Kampf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loder, F., Kampf, A. & Kopp, T. Flux periodicities in loops and junctions with d-wave superconductors. Eur. Phys. J. Spec. Top. 180, 191–215 (2009). https://doi.org/10.1140/epjst/e2010-01218-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01218-y

Keywords

Navigation