Skip to main content
Log in

Co-operative and frustration effects in novel perovskite-related phases

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We report on magnetic and electronic properties of various perovskite-type oxides containing 4d- and 5d-transition metals. The compounds under investigation crystallize in (distorted) cubic, layered, and hexagonal perovskite-related structures. These changes in structural dimensionality are reflected by different ordering phenomena. (Pseudo-) cubic perovskites ACu3B4O12 (with A = alkali, alkaline earth or rare earth; B = Ru, Ti) possess an A-site ordered structure with copper on modified A-positions. Structural investigations as well as XANES (X-ray absorption near edge structure) measurements indicate a valence degeneracy, which is keeping the oxidation state of Ru close to +4. Upon replacing Ru by Ti, the itinerant magnetism and metallic conductivity of the pure ruthenates successively change to a localized magnetic moment and a semiconducting behavior. The pure titanates like Ln2/3Cu3Ti4O12 or CaCu3Ti4O12are insulators with colossal dielectric constants. The cation-deficient Cu2+xTa4O12+δ shows a large compositional flexibility with 0.125 ≤ x ≤ 0.500. Both copper content and cooling speed have a strong impact on the crystal structure and the observed magnetic ordering. This behavior can be explained by uncompensated Cu2+-moments resulting from different site occupations. Quasi-2D La2RuO5 undergoes a structural and magnetic phase transition at roughly 160 K, leading to a diminishing magnetic moment and a semiconductor-semiconductor transition. LDA calculations reveal an antiferromagnetic coupling within pairs of neighboring Ru4+-ions, leading to a spin-Peierls like transition. New hexagonal perovskites containing Ru, Ir, and Pt crystallize in the [AO1+δ][A2BO6] structure type and contain peroxide ions (O) in the [AO1+δ] layers. La1.2Sr2.7IrO7.33 exhibits a small temperature-independent paramagnetism, which can be explained on basis of the crystal-field splitting and the strong spin-orbit coupling. The isostructural La1.2Sr2.7RuO7.33 shows a frustrated magnetic ordering at roughly 6 K. The frustration results from the alignment of Ru5+-ions, which form elongated, edge-sharing Ru4-tetrahedra. Substituting La3+ by the smaller Nd3+ results in shorter Ru–Ru distances and leads to an increase of the frustrated magnetic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France, 4077 (1967)

  2. M. Marezio, P.D. Dernier, J. Chenavas, J.C. Joubert, J. Solid State Chem. 6, 16 (1973)

    Article  ADS  Google Scholar 

  3. B. Bochu, J.C. Joubert, A. Collomb, B. Ferrand, D. Samaras, J. Magn. Magn. Mater. 15–18, 1319 (1980)

    Article  Google Scholar 

  4. U. Schwingenschlögl, V. Eyert, U. Eckern, Chem. Phys. Let. 370, 719 (2003)

    Article  ADS  Google Scholar 

  5. Y. Ozaki, M. Ghedira, J. Chenavas, J.C. Joubert, M. Marezio, Acta Crystallogr., Sect B 33, 3615 (1977)

    Article  Google Scholar 

  6. W. Kobayashi, I. Terasaki, J. Takeya, I. Tsukada, Y. Ando, J. Phys. Soc. Jpn. 73, 2373 (2004)

    Article  ADS  Google Scholar 

  7. S.G. Ebbinghaus, A. Weidenkaff, R.J. Cava, J. Solid State Chem. 167, 126 (2002)

    Article  ADS  Google Scholar 

  8. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991)

    Article  Google Scholar 

  9. S.G. Ebbinghaus, Z. Hu, A. Reller, J. Solid State Chem. 156, 194 (2001)

    Article  ADS  Google Scholar 

  10. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  ADS  Google Scholar 

  11. A.P. Ramirez, G. Lawes, D. Li, M.A. Subramanian, Solid State Commun. 131, 251 (2004)

    Article  ADS  Google Scholar 

  12. J. Muller, A. Haouzi, C. Laviron, M. Labeau, J.C. Joubert, Mat. Res. Bull. 21, 1131 (1986)

    Article  Google Scholar 

  13. M. Labeau, B. Bochu, J.C. Joubert, J. Chenavas, J. Solid State Chem. 33, 257 (1980)

    Article  ADS  Google Scholar 

  14. N.F. Mott, Philos. Mag. 19, 835 (1969)

    Article  ADS  Google Scholar 

  15. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  16. M.A. Subramanian, D. Li, N. Duan, B. A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  17. B. Renner, S.G. Ebbinghaus, A. Reller, D. Schrupp, H.-A. Krug von Nidda, M. Heinrich, P. Lunkenheimer, M. Schetter, Mat. Res. Soc. Symp. Proc. 755, DD4.9.1-DD4.9.5 (2003)

    Google Scholar 

  18. H. Vincent, B. Bochu, J.J. Aubert, J.C. Joubert, M. Marezio, J. Solid State Chem. 24, 245 (1978)

    Article  ADS  Google Scholar 

  19. B. Renner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Appl. Phys. 96, 4400 (2004)

    Article  ADS  Google Scholar 

  20. A. Heinrich, B. Renner, R. Lux, S.G. Ebbinghaus, A. Reller, B. Stritzker, Thin Solid Films 479, 12 (2005)

    Article  ADS  Google Scholar 

  21. E.J. Felten, J. Inorg. Nucl. Chem. 29, 1168 (1967)

    Article  Google Scholar 

  22. S.G. Ebbinghaus, Prog. Solid State Chem. 35, 421 (2007)

    Article  Google Scholar 

  23. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

    Article  ADS  Google Scholar 

  24. P. Fischer, G. Frey, M. Koch, M. Könnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Bürge, U. Greuter, S. Bondt, E. Berruyer, Physica B: Condensed Matter 276–278, 146 (2000)

    Article  Google Scholar 

  25. S.N. Ruddlesden, P. Popper, Acta Cryst. 10, 538 (1957)

    Article  Google Scholar 

  26. S.N. Ruddlesden, P. Popper, Acta Cryst. 11, 54 (1958)

    Article  Google Scholar 

  27. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, J. Mannhart, Prog. Solid State Chem. 29, 1 (2001)

    Article  Google Scholar 

  28. P. Boullay, D. Mercurio, A. Bencan, A. Meden, G. Drazic, M. Kosec, J. Solid State Chem. 170, 294 (2003)

    Article  ADS  Google Scholar 

  29. P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Science 297, 2237 (2002)

    Article  ADS  Google Scholar 

  30. S.K. Malik, D.C. Kundaliya, R.D. Kale, Solid State Commun. 135, 166 (2005)

    Article  ADS  Google Scholar 

  31. S.G. Ebbinghaus, Acta Cryst. C 61, i96 (2005)

    Article  Google Scholar 

  32. V. Eyert, S.G. Ebbinghaus, Prog. Solid State Chem. 35, 433 (2007)

    Article  Google Scholar 

  33. V. Eyert, S.G. Ebbinghaus, T. Kopp, Phys. Rev. Lett. 96, 256401 (2006)

    Article  ADS  Google Scholar 

  34. G. Cao, S. McCall, Z.X. Zhou, C.S. Alexander, J.E. Crow, R.P. Guertin, C.H. Mielke, Phys. Rev. B 63, 144427 (2001)

    Article  ADS  Google Scholar 

  35. L.L. Kochergina, O.I. Kondratov, Yu. S. Shorikov, V.V. Fomichev, K.I. Petrov, Russ. J. Inor. Chem. 27, 1137 (1982)

    Google Scholar 

  36. S. Dixon, J. Marr, E.E. Lachowski, J.A. Gard, F.P. Glasser, Mat. Res. Bull. 15, 1811 (1980)

    Article  Google Scholar 

  37. W.G. Mumme, A.D. Wadsley, Acta Cryst. B 24, 1327 (1968)

    Article  Google Scholar 

  38. M.P. Pechini, U.S. Patent 3,330,697 (1967)

  39. J.B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, New York, 1963)

  40. Y. Wang, J. Lin, Y. Du, R. Qin, B. Han, C.K. Loong, Angew. Chem. Int. Ed. 39, 2730 (2000)

    Article  Google Scholar 

  41. E. Gaudin, G. Goglio, A. Besnard, J. Darriet, J. Solid State Chem. 175, 124 (2003)

    Article  ADS  Google Scholar 

  42. S.G. Ebbinghaus, J. Solid State Chem. 177, 817 (2004)

    Article  ADS  Google Scholar 

  43. T. Götzfried, A. Reller, S.G. Ebbinghaus, Solid State Sci. 6, 1205 (2004)

    Article  ADS  Google Scholar 

  44. T. Götzfried, A. Reller, S.G. Ebbinghaus, Inorg. Chem. 44, 6550 (2005)

    Article  Google Scholar 

  45. J.E. Greedan, J. Mater. Chem. 11, 37 (2001)

    Article  Google Scholar 

  46. S.G. Ebbinghaus, E.-W. Scheidt, T. Götzfried, Phys. Rev. B 75, 144414 (2007)

    Article  ADS  Google Scholar 

  47. M. Kotani, J. Phys. Soc. Jpn. 4, 293 (1949)

    Article  ADS  Google Scholar 

  48. S.G. Ebbinghaus, C. Erztoument, I. Marozau, J. Solid State Chem. 180, 3393 (2007)

    Article  ADS  Google Scholar 

  49. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  50. W.G. Penney, R. Schlapp, Physical Review 41, 194 (1932)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.G. Ebbinghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbinghaus, S., Riegg, S., Götzfried, T. et al. Co-operative and frustration effects in novel perovskite-related phases. Eur. Phys. J. Spec. Top. 180, 91–116 (2009). https://doi.org/10.1140/epjst/e2010-01213-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01213-4

Keywords

Navigation