Skip to main content
Log in

Fluctuating hydrodynamics for driven granular gases

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study a granular gas heated by a stochastic thermostat in the dilute limit. Starting from the kinetic equations governing the evolution of the correlation functions, a Boltzmann-Langevin equation is constructed. The spectrum of the corresponding linearized Boltzmann-Fokker-Planck operator is analyzed, and the equation for the fluctuating transverse velocity is derived in the hydrodynamic limit. The noise term (Langevin force) is thus known microscopically and contains two terms: one coming from the thermostat and the other from the fluctuating pressure tensor. At variance with the free cooling situation, the noise is found to be white and its amplitude is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Dufty, J. Phys.: Condens. Matter 12, A47 (2000)

    Article  ADS  Google Scholar 

  2. I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Barrat, E. Trizac, M.H. Ernst, J. Phys.: Condens. Matter 17, S2429 (2005)

    Article  ADS  Google Scholar 

  4. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  5. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)

    Article  ADS  Google Scholar 

  6. S. McNamara, W.R. Young, Phys. Rev. E 53, 5089 (1996)

    Article  ADS  Google Scholar 

  7. J.J. Brey, J.W. Dufty, A. Santos, J. Stat. Phys. 87, 1051 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. T.P.C. van Noije, M.H. Ernst, R. Brito, Physica A 251, 266 (1998)

    Article  Google Scholar 

  9. J.J. Brey, J.W. Dufty, C.S. Kim, A. Santos, Phys. Rev. E 58, 4638 (1998)

    Article  ADS  Google Scholar 

  10. N. Sela, I. Goldhirsch, J. Fluid Mech. 361, 41 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. J.J. Brey, J.W. Dufty, M.J. Ruiz-Montero, in Granular Gas Dynamics, edited by T. Poeschel, N. Brilliantov (Springer, Berlin, 2003)

  12. A. Goldshtein, M. Shapiro, J. Fluid. Mech. 282, 75 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P.K. Haff, J. Fluid. Mech. 134, 401 (1983)

    Article  MATH  ADS  Google Scholar 

  14. J.J. Brey, M.I. García de Soria, P. Maynar, EPL 84, 24002(2008)

    Article  ADS  Google Scholar 

  15. J.J. Brey, P. Maynar, M.I. García de Soria, Phys. Rev. E 79, 051305 (2009)

    Article  ADS  Google Scholar 

  16. J.J. Brey, et al. (to be published)

  17. T.P.C. van Noije, M.H. Ernst, Granular Matter 1, 57 (1998)

    Article  Google Scholar 

  18. D.R.M. Williams, F.C. MacKintosh, Phys. Rev. E 54, R9 (1996)

    Article  ADS  Google Scholar 

  19. A. Puglisi, V. Loreto, U.M.B. Marconi, A. Vulpiani, Phys. Rev. E 59, 5582 (1999)

    Article  ADS  Google Scholar 

  20. T.P.C. van Noije, M.H. Ernst, E. Trizac, I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999)

    Article  ADS  Google Scholar 

  21. I. Pagonabarraga, E. Trizac, T.P.C. van Noije, M.H. Ernst, Phys. Rev. E 65, 011303 (2002)

    Article  ADS  Google Scholar 

  22. J.M. Montanero, A. Santos, Granular Matter 2, 53 (2000)

    Article  Google Scholar 

  23. S.J. Moon, M.D. Shattuck, J.B. Swift, Phys. Rev. E 64, 031303 (2001)

    Article  ADS  Google Scholar 

  24. V. Garzó, J.M. Montanero, Physica A 313, 336 (2002)

    Article  MATH  ADS  Google Scholar 

  25. P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac, Eur. Phys. J. B 51, 377 (2006)

    Article  ADS  Google Scholar 

  26. M.H. Ernst, E. Trizac, A. Barrat, J. Stat. Phys. 124, 549 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M.H. Ernst, E. Trizac, A. Barrat, Europhys. Lett. 76, 56 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Fiege, T. Aspelmeier, A. Zippelius, Phys. Rev. Lett. 102, 098001 (2009)

    Article  ADS  Google Scholar 

  29. L. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959), chapter 17

  30. P. Résibois, M. de Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977)

  31. M. Bixon, R. Zwanzig, Phys. Rev. 187, 267 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  32. M.I. García de Soria, P. Maynar, E. Trizac, Molec. Phys. 107, 383 (2009)

    Article  ADS  Google Scholar 

  33. J.J. Brey, M.I. García de Soria, P. Maynar, M.J. Ruiz-Montero, Phys. Rev. E 70, 011302 (2004)

    Article  ADS  Google Scholar 

  34. A. Baskaran, J.W. Dufty, J.J. Brey, Phys. Rev. E 77, 011920 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Cafiero, S. Luding, H.J. Herrmann, Phys. Rev. Lett. 84, 6014 (2000)

    Article  ADS  Google Scholar 

  36. Note that at the Boltzmann-Langevin level, the noise is assumed white; in the present driven case, it is then shown that the noise for the fluctuating transverse velocity can be considered as white also; this was not the case in the free cooling situation [15]

  37. A. Puglisi, A Baldassarri, V. Loreto, Phys. Rev. E 66, 061305 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maynar, P., Soria, M. & Trizac, E. Fluctuating hydrodynamics for driven granular gases. Eur. Phys. J. Spec. Top. 179, 123–139 (2009). https://doi.org/10.1140/epjst/e2010-01198-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01198-x

Keywords

Navigation