Skip to main content
Log in

The effects of forcing and dissipation on phase transitions in thin granular layers

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recent experimental and computational studies of vibrated thin layers of identical spheres have shown transitions to ordered phases similar to those seen in equilibrium systems. Motivated by these results, we carry out simulations of hard inelastic spheres forced by homogenous white noise. We find a transition to an ordered state of the same symmetry as that seen in the experiments, but the clear phase separation observed in the vibrated system is absent. Simulations of purely elastic spheres also show no evidence for phase separation. We show that the energy injection in the vibrated system is dramatically different in the different phases, and suggest that this creates an effective surface tension not present in the equilibrium or randomly forced systems. We do find, however, that inelasticity suppresses the onset of the ordered phase with random forcing, as is observed in the vibrating system, and that the amount of the suppression is proportional to the degree of inelasticity. The suppression depends on the details of the energy injection mechanism, but is completely eliminated when inelastic collisions are replaced by uniform system-wide energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  2. J.S. Olafsen, J.S. Urbach, Phys. Rev. Lett. 81, 4369 (1998)

    Article  ADS  Google Scholar 

  3. J.S. Olafsen, J.S. Urbach, Phys. Rev. E 60, R2468 (1999)

    Article  ADS  Google Scholar 

  4. W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999)

    Article  MATH  ADS  Google Scholar 

  5. G.W. Baxter, J.S. Olafsen, Nature 425, 680 (2003)

    Article  ADS  Google Scholar 

  6. P.M. Reis, R.A. Ingale, M.D. Shattuck, Phys. Rev. E 75, 051311 (2007)

    Article  ADS  Google Scholar 

  7. G.W. Baxter, J.S. Olafsen, Phys. Rev. Lett. 99, 028001 (2007)

    Article  ADS  Google Scholar 

  8. A. Burdeau, P. Viot, Phys. Rev. E 78, 061306 (2009)

    Article  ADS  Google Scholar 

  9. A. Prevost, D.A. Egolf, J.S. Urbach, Phys. Rev. Lett. 89, 084301 (2002)

    Article  ADS  Google Scholar 

  10. T.P.C. van Noije, M.H. Ernst, Gran. Matt. 1, 57 (1998)

    Article  Google Scholar 

  11. T.P.C. van Noije, M.H. Ernst, E. Trizac, I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999)

    Article  ADS  Google Scholar 

  12. I. Pagonabarraga, E. Trizac, T.P.C van Noije, M.H. Ernst, Phys. Rev. E 65, 011303 (2002)

    Article  ADS  Google Scholar 

  13. J.S. Olafsen, J.S. Urbach, Phys. Rev. Lett. 95, 098002 (2005)

    Article  ADS  Google Scholar 

  14. P.M. Reis, R.A. Ingale, M.D. Shattuck, Phys. Rev. Lett. 96, 258001 (2006)

    Article  ADS  Google Scholar 

  15. A. Prevost, P. Melby, D.A. Egolf, J.S. Urbach, Phys. Rev. E 70, 050301(R) (2004)

    Article  ADS  Google Scholar 

  16. P. Melby, F. Vega Reyes, A. Prevost, R. Robertson, P. Kumar, D.A. Egolf, J.S. Urbach, J. Phys. Cond. Mat. 17, S2689 (2005)

    Article  ADS  Google Scholar 

  17. F. Vega Reyes, J.S. Urbach, Phys. Rev. E 78, 051301 (2008)

    Article  ADS  Google Scholar 

  18. M.G. Clerc, P. Cordero, J. Dunstan, K. Huff, N. Mujica, D. Risso, G. Vargas, Nat. Phys. 4, 249 (2008)

    Article  Google Scholar 

  19. S.F. Foerster, M.Y. Louge, H. Chang, H. Allia, Phys. Fluids 6, 1108 (1994)

    Article  ADS  Google Scholar 

  20. D.C. Rapaport, The Art of Molecular Dynamics simulation., 2nd ed. (Cambridge University Press, 2004)

  21. X. Nie, E. Ben-Naim, S.Y. Chen, Europhys. Lett. 51, 679 (2000)

    Article  ADS  Google Scholar 

  22. L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Phys. Rev. E 64, 051302 (2001)

    Article  ADS  Google Scholar 

  23. J. Sun, F. Battaglia, S. Subramaniam, Phys. Rev. E 74, 061307 (2006)

    Article  ADS  Google Scholar 

  24. P. Melby, A. Prevost, D. A. Egolf, J. S. Urbach, Phys. Rev. E 76, 051307 (2007)

    Article  ADS  Google Scholar 

  25. T. Pöschel, T. Schwager, Computational Granular Dynamics, Ch. 3 (Springer Verlag, 2005)

  26. C. Bizon, M.D. Shattuck, J.B. Swift, H.L. Swinney, Phys. Rev. E 60, 4340 (1999)

    Article  ADS  Google Scholar 

  27. B. Pansu, P. Pieranski, P. Pieranski, J. Phys. (France) 45, 331 (1983)

    Google Scholar 

  28. P. Pieranski, L. Strzelecki, B. Pansu, Phys. Rev. Lett. 50, 900 (1983)

    Article  ADS  Google Scholar 

  29. B. Pansu, P. Pieranski, P. Pieranski, J. Phys. (France) 45, 331 (1984)

    Google Scholar 

  30. M. Schmidt, H. Löwen, Phys. Rev. Lett. 76, 4552 (1996)

    Article  ADS  Google Scholar 

  31. M. Schmidt, H. Löwen, Phys. Rev. E 55, 7228 (1997)

    Article  ADS  Google Scholar 

  32. R. Zangi, S.A. Rice, Phys. Rev. E 61, 660 (2000)

    Article  ADS  Google Scholar 

  33. A. Fiege, T. Aspelmeier, A. Zippelius, Phys. Rev. Lett. 102, 098001 (2009)

    Article  ADS  Google Scholar 

  34. R. Cafiero, S. Luding, H.J. Herrmann, Phys. Rev. Lett. 84, 6014 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Urbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobkovsky, A., Reyes, F. & Urbach, J. The effects of forcing and dissipation on phase transitions in thin granular layers. Eur. Phys. J. Spec. Top. 179, 113–122 (2009). https://doi.org/10.1140/epjst/e2010-01197-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01197-y

Keywords

Navigation