Skip to main content
Log in

Mechanisms of electron injection into laser wakefields by a weak counter-propagating pulse

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Numerical studies are conducted on the electron injection into the first acceleration bucket of a laser wakefield by a weak counter-propagating laser pulse. It is shown that there are two injection mechanisms involved during the colliding laser interaction, the collective injection and stochastic injection. They are caused by the time-averaged ponderomotive force push and stochastic acceleration in the interfering fields, respectively. The threshold amplitude of the injection laser pulse is estimated for the occurrence of electron injection, which is close to that for stochastic acceleration and depends weakly upon the plasma density. The trapping of a large number of injection electrons can result in significant decay of the laser wakefield behind the first wave bucket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.M. Hooker, D.A. Jaroszynski, K. Burnett, Phil. Trans. R. Soc. A 364, 553 (2006) and references therein

  • E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. PS-24, 252 (1996)

    Google Scholar 

  • A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)

    Google Scholar 

  • W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006)

    Google Scholar 

  • S.P.D. Mangles, et al., Nature (London) 431, 535 (2004); C.G.R. Geddes, et al., Nature (London) 431, 538 (2004); J. Faure, et al., Nature (London) 431, 541 (2004)

  • W.P. Leemans, B. Nagler, A.J. Gonsalves, et al., Nat. Phys. 418, 1 (2006)

  • J.M. Dawson, Phys. Rev. 113, 383 (1959); T.P. Coffey, Phys. Fluids 14, 1402 (1971)

  • T. Katsouleas, W.B. Mori, Phys. Rev. Lett. 61, 90 (1988)

    Google Scholar 

  • J.B. Rosenzweig, Phys. Rev. A 38, 3634 (1988)

    Google Scholar 

  • Z.M. Sheng, J. Meyer-ter-Vehn, Phys. Plasmas 4, 493 (1997)

    Google Scholar 

  • C.B. Schroeder, E. Esarey, B.A. Shadwick, Phys. Rev. E 72, 055401(R) (2005)

  • R.M.G.M. Trines, et al., Phys. Rev. E 63, 026406 (2001)

  • R.M.G.M. Trines, P.A. Norreys, Phys. Plasmas 13, 123102 (2006)

    Google Scholar 

  • D. Umstadter, J.K. Kim, E. Dodd, Phys. Rev. Lett. 76, 2073 (1996)

  • E. Esarey, et al., Phys. Rev. Lett. 79, 2682 (1997)

  • R.G. Hemker, et al., Phys. Rev. E 57, 5920 (1998)

  • S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Phys. Rev. E 58, R5257 (1998)

  • C.B. Schroeder, et al., Phys. Rev. E 59, 6037 (1999)

  • Z.-M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, D. Umstadter, 31st EPS Conference on Plasma Phys. London, 28 June – 2 July 2004 ECA, vol. 28G, O-1.29 (2004)

  • P. Zhang, et al., Phys. Plasmas 10, 2093 (2003); Phys. Rev. Lett. 91, 225001 (2003)

  • Z.-M. Sheng, et al., Phys. Rev. Lett. 88, 055004 (2002); Phys. Rev. E 69, 016407 (2004)

  • A. Bourdier, D. Patin, Eur. Phys. J. D 32, 361 (2005)

    Google Scholar 

  • A.L. Pokrovsky, A.E. Kaplan, Phys. Rev. A 72, 043401 (2005)

    Google Scholar 

  • M. Chen, Z.-M. Sheng, Y.-Y. Ma, J. Zhang, J. Appl. Phys. 99, 056109 (2006)

    Google Scholar 

  • H. Suk, N. Barov, J.B. Rosenzweig, E. Esarey, Phys. Rev. Lett. 86, 1011 (2001)

    Google Scholar 

  • H. Kotaki, S. Masuda, M. Kando, J.K. Koga, K. Nakajima, Phys. Plasmas 11, 3296 (2004)

  • G. Fubiani, E. Esarey, C.B. Schroeder, W.P. Leemans, Phys. Rev. E 70, 016402 (2004)

    Google Scholar 

  • J. Cary, R.E. Giacone, C. Nieter, D.L. Bruhwiler, Phys. Plasmas 12, 056704 (2004)

    Google Scholar 

  • J. Faure, C. Rechatin, A. Norlin, A. Liftschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006)

    Google Scholar 

  • Z.M. Sheng, J. Zhang, D. Umstader, Appl. Phys. B 77, 673 (2003)

    Google Scholar 

  • The plasma wavebreaking usually appears at a few plasma wave wavelengths (depending upon the plasma wave amplitude) behind the driving pulse due to the relativistic effect. See, for example, H. Xu, Z.-M. Sheng, J. Zhang, Phys. Scr. 74, 673 (2006); E. Infeld, G. Rowlands, Phys. Rev. Lett. 62, 1122 (1989)

  • W.M. Wang, Z.M. Sheng, Phys. Plasmas 15, 013101 (2008)

    Google Scholar 

  • E. Esarey, M. Pilloff, Phys. Plasmas 2, 1432 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Z., Wang, W., Trines, R. et al. Mechanisms of electron injection into laser wakefields by a weak counter-propagating pulse. Eur. Phys. J. Spec. Top. 175, 49–55 (2009). https://doi.org/10.1140/epjst/e2009-01116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01116-5

Keywords

Navigation