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Abstract. We study the statistics of the horizontal component of atmospheric
boundary layer wind speed and introduce a stochastic process which has simi-
lar properties. Motivated by the non-stationarity of wind velocity data, we de-
scribe statistical methods to verify the picture of natural atmospheric boundary
layer turbulence to be composed of successively occurring close to ideal turbu-
lence phases with different parameters. We focus on the fluctuation of wind speed
around its mean behaviour and show that there is linear relationship between the
standard deviation of the fluctuation and the current mean wind speed. Addition-
ally, we analyse the increment statistics and investigate the time dependence of
the parameters describing the increment distribution. Noting that the first order
geometric auto regressive process has similar statistical properties, we investigate
this similarity and analyse the extent to which this stochastic process is a suitable
model for wind speed simulation.

1 Atmospheric boundary layer and wind speed data

The atmospheric boundary layer (ABL) is the lower part of the atmosphere whose dynamics
is more or less strongly influenced by surface effects. Evidently, due to viscosity, the boundary
condition is that the wind speed has to decay to zero closely to the surface (non slip boundary
conditions). Due to turbulence, this effect is directly visible only in the very few millimeters
above the boundary. Under certain conditions which guarantee well mixing of the ABL, the
velocity depends logarithmically on the height above ground [1,2]. Since real surfaces possess a
lot of structure, local wind speeds and in particular their direction can differ strongly from this
ideal scenario. Also the vertical motion is trivially suppressed close to any horizontal boundary,
so that a turbulent wind field close to a boundary cannot be isotropic. All these effects indeed do
not only affect the mean flow, but also the turbulent fluctuations and their statistics. Another
important complication is due to buoyancy forces and surface temperatures: The heating of the
air by surface contact is much more efficient than the direct heating through solar radiation
absorbed in the air. The heating of air masses close to the surface causes instabilities and
convective forcing of the air flow, which is particularly relevant on sunny days. This additional
forcing contributes strongly to an enhancement of the turbulence intensity. Both effects, surface
orography and temperature, cause effectively non-stationary influences, since the first depends
on the direction of wind and its mean speed (which both are time-dependent), and the latter
depends on solar radiation. Also, they depend on many details of the particular surface. It is
evident that detailed realistic modelling of these effects in terms of short time properties of the
turbulent flow above a surface is very difficult. Therefore, in this paper we present a statistical
analysis of experimental data and a stochastic model for the creation of synthetic wind speed
data.
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The goal is to understand the nature of this boundary layer turbulence several tens of meters
above ground, as it might be relevant for man-made constructions such as houses, bridges, wind
turbines, but also for objects from the biosphere such as trees or the flight of insects. We perform
a statistical analysis which is inspired by fully developed laboratory turbulence, but which in
addition is suitable to inspect instationarities. Moreover, we propose a stochastic model which
is capable of generating synthetic wind speed data, whose statistical properties are similar
to experimental boundary layer wind speed. Such models might be useful for the numerical
computation of loads on structures, but also for the theoretical exploration of extreme wind
gusts.
In this contribution we summarise our results which are/will be published in more detail

about wind speed statistics [3] and wind speed modelling [4].

2 Statistical analysis of wind speed

In the literature there is ample evidence that the air flow in the ABL is turbulent. E.g., an
energy cascade with a power law spectrum S(k) ≈ k−5/3 can typically be observed [2]. Therefore
it is reasonable to study wind speed data in the ABL in terms of well established statistics
of turbulence. In this section we recall two important statistics: fluctuation and increment
statistics.
We analyse data sets of the horizontal component of wind speeds recorded at the Lammefjord

site r (55◦ 47′41′′ N, 11◦ 26′52′′ E) with a frequency of ν = 8 Hz. The time series is denoted by
{un}, n = 1, . . . , N , where u2n = u2x(t = n/ν) + u2y(t = n/ν). The wind speed was measured
with cup-anemometers mounted on a mast and obtained from [5].
Attention has to be paid due to the non-stationarity of the time series and by that we

mean a non-stationarity beyond the turbulent fluctuation. The air flow in the ABL, i.e. in the
lowest few hundreds of meters of the atmosphere [6], is strongly influenced by surface roughness
and hence orography and land use, but even more by thermal effects through heating from
the ground. Both effects do not only introduce additional structures into the turbulent flow,
but also cause non-stationarities because these effects depend, e.g. on the intensity of solar
radiation and on the direction of the surface wind, which both change much faster than large
scale pressure differences which generate the overall wind conditions. That is, there are two
sources of non-stationarity: one corresponds to the turbulent fluctuation and is described by
parameters such as the turbulence intensity and the other one reflects the temporal change of
these parameters due to the change of the external conditions driving the wind. We want to
consider this difference in respect to laboratory turbulence with constant driving mechanism in
our analysis.
First, we introduce the fluctuation statistics. It is customary in turbulence research [7,8] to

decompose the wind speed, in our case the horizontal component, during a period of time T as

u(r, t) = U(r) + u′(r, t) (1)

where U(r) is the average value of u(r, t) over the period T , which is typically chosen to be 10min
or 1 h. We will choose a much smaller period in the order of 10 s in order to improve statistics.
The turbulence intensity TI [2,7] is defined as the root mean square of u′(r, t) over the period T
in units of U(r) so that it states the percentage of the mean flow which are represented by the
velocity fluctuation with frequency larger than 1/T . Due to turbulent fluctuation U(r) changes
from one period to another, but the TI remains constant and its value only depends on the
length T of the periods (the TI increases with increasing T ). The Taylor hypothesis [9], which
states that the spatial fluctuations within space U(r)T can be assessed by temporal fluctuations
within period T , can be assumed to hold with sufficient accuracy if the corresponding TI is less
than 0.5 [10]. As the ABL turbulence depends on the weather situation, the ABL TI can vary
with time, i.e., it may only remain constant over some periods of size T . We treat it as being
constant over 24 h. For a more detailed discussion, the reader is referred to [3].
The fluctuation of the wind speed around the moving average over m = 2m̃ + 1 sample

points with m̃ = 0, 1, 2, . . . is denoted by

f (m)n = un − ū(m)n (2)
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where the moving average is given by

ū(m)n =
1

m

m̃∑
k=−m̃

un+k. (3)

That is, the fluctuation reflects the current volatility of the wind speed. Due to the non-
stationarity of the time series, a directly derived statistics of the fluctuation is meaningless. But

assuming that the fluctuation conditioned on a given value ū
(m)
n = V of the moving average

behaves stationary, we can estimate the (conditioned) distribution

q(m)(f |V ) =
〈
δ
(
f − f (m)n

)〉
n∈
{
n:ū

(m)
n ∈[V−∆V/2,V+∆V/2]

} (4)

for each 24 h recording individually. Figure 1 depicts the estimated distributions. It can be
inferred from the plot that the fluctuation conditioned on V is approximately of a Gaussian
distribution with a standard deviation being proportional to V . This linear dependence is
depicted on top of the boxes in Fig. 1. We are interested in the proportionality factor α(m),
which can be interpreted as the TI. Attention has to be paid to the binning of V : if ∆V is too
large, q(m)(f |V ) corresponds to a superposition of normal distributions with variances ranging
from α(m) × (V − ∆V/2) to α(m) × (V + ∆V/2), whereas if ∆V is too small, there are not
enough data points within a V bin to estimate the distribution properly. In order to visualise
the result in Fig. 1, ∆V is chosen to be 0.02, 0.5, 0.5m s−1 for the data acquired at day 186, 191,
and 192 respectively. The proportionality factor α(m), and therefore the slope of the straight
line on top of the corresponding box in Fig. 1, is estimated in a way which is independent from

the choice of ∆V by estimating the standard deviation of the set {f (m)n /ū
(m)
n }. For the three

24 h recordings it takes the values 0.059, 0.094, and 0.075, respectively. This analysis shows that
the TI is well inside the regime of validity of the Taylor hypothesis and additionally that the

turbulence intensity is a well defined number despite fluctuations of ū
(m)
n . The slight deviations

of the standard deviations of q(m)(f |V ) from linearity in V might be due to a non-constant TI
over the considered 24 h period.

Of course, as the wind speed un = ū
(m)
n + f

(m)
n cannot be negative the approximation

q(m)(f |V ) ≈ N0,α(m)2V 2(f), (5)

where Nµ,σ2( · ) denotes a Gaussian distribution with mean µ and variance σ2, is only valid if
the probability for f < −V is negligible. The integral

∫ −V
−∞
df N0,α(m)2V 2(f) =

1

2

[
1 + erf

(
−
√
2

2α(m)

)]
(6)

does not depend on V and is close to zero if α(m) is close to zero—which has been observed at
the Lammefjord site.
We compare the result (5) with stationary laboratory turbulence, where from a statistical

point of view the estimation of the velocity distribution makes sense. The authors of [11] mea-
sured the air speed in an air into air free jet experiment. The air speed is in good approximation
of a normal distribution with mean ū = 2.25m s−1 and standard deviation 0.341m s−1, which
corresponds to a TI of 0.15. As the mean speed does not change with time, the fluctuation corre-
sponds to the air velocity shifted by ū so that it is normally distributed as well. The parameters
of the normal distribution are not that important as they merely reflect the experimental setup,
it suffices to note that the fluctuation is normally distributed.
Hence, we can interpret the ABL wind speed time series as a composition of stationary

turbulence phases with different mean wind velocities and standard deviation being proportional
to the mean wind velocity. The proportionality factor can be treated as being constant over a
larger time scale than the scale on which the mean wind speed changes.
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Fig. 1. Estimated distribution of the fluctuation conditioned on the value V of the moving average
over m = 101 time steps for the wind data acquired at the Lammefjord [5] site. The crosses symbolise
the estimation whereas the dashed lines represent Gaussian distributions with zero mean and same
variance as q(m)(f |V ). The standard deviation of the fluctuation is again plotted on top of the boxes.
The black dots represent the numerical estimation whereas the dotted line corresponds to a line through
the origin.

Second, we discuss the increment statistics and verify in detail the hypothesis that natural
ABL turbulence is a composition of successively occurring close to ideal turbulence [12–14]
with different parameters. The air/wind speed u(r, t) in ideal turbulence is characterised by its
spatial correlations, i.e., the statistics of u(r+∆r, t)− u(r, t) which has been hypothesised by
Kolmogorov in [14]. The Taylor hypothesis [9] assumes that spatial correlations can be trans-
lated into temporal correlations through the transport of spatial structures by the mean flow.
Under this assumption, Castaing et al. [15] formulated the following hypothesis for the incre-
ment u(r, t+ δt)− u(r, t): The increment statistics is a superposition of Gaussian distributions
with zero mean and variance 1/β, where β is constant on short time intervals. On a larger tem-
poral scale β changes according to a log-normal distribution. Assuming that ABL wind speed
reflects ideal turbulence, this hypothesis leads to an analytical expression for the distribution
of the increment series

us;n = un+s − un (7)

of the velocity recordings. According to [15] its distribution is given by

Cas(us;n) =
1

2πλs

∫ ∞
0

dβ
√
β

exp

[
−1
2

(
1

λs
ln
β

βs

)2
− 12
β
u2s;n

]
, (8)

which is referred to as the Castaing distribution. It is described by two parameters βs and
λ2s which are called position and shape parameter, respectively. For positive shape parameter
the Castaing distribution is fat-tailed whereas it becomes a Gaussian distribution for λ2s = 0.
The s-dependence of these parameters is another importants feature of the flow. It has been
shown both theoretically [15] and experimentally [16,17] that for ideal turbulence the shape
parameters approaches zero for sufficient large s. That is, the Castaing distribution takes the
shape of a Gaussian distribution with variance 1/βs for very large s, whereas it resembles a
symmetric exponential distribution for small s.
We check whether the Lammefjord recordings [5] fulfil the above mentioned hypothesis for

ideal turbulence. Instead of testing if the increment distribution for a given increment length s
takes the shape of 8 with λ2s → 0 for s → ∞, we directly test the hypothesis using the
superstatistics approach [18]. Assuming that the temporal scale Ts where the increment series
can be treated as being normally distributed is constant, Beck et al. [19,20] developed an
algorithm estimating Ts. The β series corresponds to the inverse of the estimated variance
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Fig. 2. Schematic sketch of the superstatics approach. The increment series is considered to consist of
successive segments of length Ts where it can be treated as being normally distributed. Within such a
period the mean is considered to be zero and the standard deviation (std dev) is denoted by 1/

√
β so

that it gives rise to the β series.

in each segment of length Ts. Figure 2 sketches the parameterisation of the increment series
according to the superstatistics approach. For ideal turbulence the β series is of a log-normal
distribution which means that the logarithm of β is normally distributed. The usefulness of the
algorithm was demonstrated in Ref. [21], where it was applied to low resolution wind speed
recordings at the Florence airport (the velocity was measured every five minutes for one week).
As mentioned above, we apply this algorithm to ABL turbulence with higher resolution

(ν = 8Hz). It is applied exemplarily to the increment series with s = 8 of the 24 h Lammefjord
recordings day 191. The temporal scale Ts is found to be 116 time steps being equivalent to
14.5 s. Figure 3 shows in the upper left panel the estimated distribution of Λ = lnβ, which is
close to a normal distribution. But it has a systematic and statistically significant deviation. In
fact, it has a positive skewness. The upper right panel of Fig. 3 depicts the quantile-quantile plot
demonstrating that Λ is not of a normal distribution. Therefore, we split the 24 h recording into
twelve 2 h recordings, see the lower panel of Fig. 3. Each sub-series is investigated with respect
to superstatistics individually. The Λ series of each of the twelve 2 h recordings were tested for
normality using a Kolmogorov-Smirnov test [22,23] whose test variable is plotted in the lowest
panel of Fig. 4. Furthermore, this is not only done for s = 8, but a variety of increment lengths
is considered. It is obvious from Fig. 4 that the Castaing hypothesis, i.e., Λ is of a Gaussian
distribution, can not be rejected with a significance level of 1%. That is, the ABL wind speed
fulfils the ideal turbulence hypothesis in each of the twelve 2 h recordings. The upper and central
panel of Fig. 4 show the mean and variance of the Λ distribution, respectively, for each of the
twelve 2 h recordings and the variety of increment lengths. They can be interpreted as lnβs and
λ2s, respectively, of the corresponding increment distribution (8). The plot in the central panel
demonstrates that the shape parameter λ2s approaches zero as the increment length s increases.
This is evidence that each of the twelve 2 h ABL wind speed recordings reflect ideal turbulence
whereas the 24 h recording does not, see Fig. 3.

3 Stochastic process simulating wind speed

Motivated by the results of the above mentioned statistical analysis of ABL wind speed, we
investigate the geometric AR(1) process as a suitable model to simulate ABL wind speed during
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that day. The numbers 1 to 12 illustrate the twelve 2 h sub-samples which are individually investigated
with respect to superstatistics.
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Fig. 4. The top (central) panel shows the mean (variance) of Λ for each sub-sample of the data acquired
at day 191 at the [5] site and for several s. The mean and variance can be identified with the position
and shape parameter, respectively. The solid line corresponds to s = 8 and is therefore related to the
graphs in figure 3. The test value of the Kolmogorov-Smirnov test is plotted in the lowest panel. The
dashed line corresponds to the critical value for the significance level α = 1%.

an “ideal turbulence phase”. It is defined by the recursion formula

ûn+1

Û
=

(
ûn

Û

)a
ebξn (9)
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for n = 1, 2, 3, . . . and with ξn denoting a realisation of white noise. It is characterised by three
parameters:

– Û , which has the dimension of velocity and specifies the scale,
– a, which determines the degree of correlation between un+1 and un, and
– b, which denotes the noise strength.

The process is named geometric AR(1) process because the logarithm of (9) corresponds to an
AR(1) process. For |a| < 1 the process ûn is stationary and of a log-normal distribution with
density

p̂(û) =
1

û
√
2πλ2

exp

[
1

2λ2
ln2
(
û

Û

)]
, (10)

where

λ2 =
b2

1− a2 (11)

denotes the variance of ln(ûn/Û). The auto correlation function [24] reads

γû(τ) =
eλ
2a|τ| − 1
eλ
2 − 1 , (12)

which for small lag decays faster than exponentially and for large lag has an exponential decay.
We show that the process (9) has same statistical properties as ABL wind speed data if

a = 1− ε with ε� 1 and b� 1. (13)

Hence, we can neglect the influence of a in Eq. (9) on the neighbouring time step values ûn±s
around n for 0 < s� 1/ε and expand any occurring exponential terms in b with respect to b.
The fluctuation series (2) of the process (9), denoted by f̂

(m)
n , for a given m = 2m̃+1 which

is small enough for the moving average ¯̂u
(m)
n to fluctuate around the expectation value Ûeλ

2/2

reads

f̂ (m)n ∼ ¯̂u(m)n × b
m

m̃−1∑
l=0

(m̃− l)(ξn−l−1 − ξn+l) (14)

by inserting Eq. (9) and iterations thereof into (2). A full derivation is given in a separate paper

[4]. Consequently, the distribution of the fluctuation conditioned on the value V̂ of the moving

average is given by a symmetric normal distribution with standard deviation α̂(m)V̂ where

α̂(m) ∼ b
2

√
m2 − 1
3m

. (15)

This is in fact one of the desired property a stochastic process must have to simulate wind
speed data.
We check that the approximations leading to this result are justified by numerical simula-

tions. We generate 106 points using (9) with a = 0.99 and b = 0.1. The conditioned histograms
of the fluctuation for m = 11 are shown in Fig. 5. The good agreement with Gaussian shaped
curves is evident.
Note that if m is chosen to be large such that ¯̂u(m) does not much fluctuate around the

expectation value of un, i.e., Ûe
λ2/2, we have that the fluctuation series corresponds to ûn shifted

by Ûeλ
2/2. Therefore, the fluctuation distribution is a shifted log-normal. That is, considering

the fluctuation over a large period moving average, the process (9) does not reproduce the
properties of ABL turbulence data, whose large period moving average also changes.
Additionally, we need to check whether the increments

ûn;s = ûn+s − ûn (16)
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process with a = 0.99 and b = 0.1. The dashed
lines correspond to symmetric normal distributions.
Note that the distributions are shifted against
one another in vertical direction for clarity
improvement.

of the geometric AR(1) process as given in (9) and (13) have the same intermittent distribution
as ABL wind speed increments. As s can be arbitrarily large, we can not neglect the influence
of a < 1 on ûn+s. In fact, there is no need to do so because the distribution of the random
variable (16) can be calculated analytically for arbitrary a with |a| < 1 and b by the integral

p̂s(ûs;n) =

∫
dûndûn+s ρ̂s(ûn, ûn+s) δ(ûn+s − ûn − ûs;n). (17)

The joint distribution of ûn and ûn+s, which is denoted by ρ̂s(ûn, ûn+s), can be determined by
iterating (9) s times so that that the increment distribution (17) is given by

p̂s(ûn;s) =
1

ÛN(s)

∞∫
|ûn;s/Û |

dy

y+y−
exp

{
− ln

2 y+ + ln
2 y− − 2as ln y+ ln y−
2λ2(1− a2s)

}
, (18)

where y± is abbreviation for (y ± ûn;s/Û)/2 and N(s) = 4πλ2
√
1− a2s.

We compare the shape of this distribution with the shape of the Castaing distribution (8)
with same variance and kurtosis. That is, Cas(ûn;s) with position parameter

βs =
1

2Û2
(
1− e−λ2z(s))

√
1 + 2e−λ2z(s) + 3e−2λ2z(s)

6
(19)

and shape parameter

Λ2s = 4λ
2 + ln

1 + 2e−λ
2z(s) + 3e−2λ

2z(s)

6
, (20)

using z(s) = 1−as, see [4]. Note that both densities are symmetric and have therefore vanishing
odd moments. The integrals (8) and (18) can be computed numerically. Additionally, we esti-
mate the increment distribution from a generated data set (106 points) and compare its shape
with (18). Figure 6 depicts the increment distribution p̂s(ûn;s) (estimation from data series and
analytical solution) and the Castaing distribution Cas(ûn;s) with same variance and kurtosis
for a geometric AR(1) process with a = 0.99 and b = 0.1 for two increment lengths: s = 1 (a)
and s = 512 (b). The range of the x-axis is approximately ±5 times the standard deviation of
ûn;s. It can be inferred from the plots that in good approximation p̂s(ûn;s) ≈ Cas(ûn;s).
For ideal turbulence data [11] the shape parameter approaches zero for sufficiently large s.

However, Eq. (20) states that the shape parameter in the limit of large increment length s of a
geometric AR(1) process takes the value of

lim
s→∞λ

2
s = 4λ

2 + ln
1 + 2e−λ

2

+ 3e−2λ
2

6
, (21)

which unfortunately is larger than zero. That is, the increment distribution of ideal turbulence
data for very large increment length s approaches a symmetric normal distribution whereas the
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Fig. 6. Increment distributions of a geometric AR(1) process with a = 0.99 and b = 0.1 for s = 1 and

s = 512. σû;s denotes the standard deviation of ûn;s. The velocity is given in units of Û . The position
and shape parameter of the corresponding increment distribution as a function of s.

increment distribution of the process (9) is not a symmetric normal distribution in the limit
s→∞. This is of no surprise because ûs;n corresponds for very large s to the difference between
two (nearly) independent log-normally distributed random variables which is not a Gaussian
distributed random variable.

4 Conclusion
It is evident that the mean and the standard deviation of the ABL wind speed data computed
on time intervals of hours changes with time. But when considering the fluctuations around a
moving window mean, there is a linear relationship between these two quantities. Treating the
proportionality factor, the TI, as being constant over 24 h yields reasonable statistics for the
wind speed fluctuation, although one could even reach for a finer time resolution. The wind
velocity can be treated as a superposition of a random variable reflecting the current mean
wind speed with a normally distributed random variable with vanishing mean and a standard
deviation being proportional to the current mean wind speed. As a cross-check, if the mean
speed does not change, ABL wind speed has the same statistics as air speed measured in
stationary laboratory turbulence: a nearly Gaussian distribution.
Moreover, a time series reflecting ABL wind speed turbulence can be treated as consisting of

subsequent sub-series reflecting ideal turbulence. That is, the parameters of the increment dis-
tribution change with time whereas within such a phase they can be treated as being constant.
The superstatics approach is capable of resolving their time dependence.
The geometric AR(1) process (9) with exponent a � 1 and the noise strength b � 1 is a

reasonable and very simple stochastic process for simulating ABL wind speed during an “ideal
turbulence phase”. It has the same fluctuation distribution conditioned on the value V of the
moving average as observed in ABL wind speed data: a symmetric Gaussian with a standard
deviation being proportional to V . Additionally, it has nearly the same increment statistics as
observed in ABL wind speed data: a Castaing distribution. Even the shape parameter decreases
as the increment length s becomes larger. However, this model does not provide a clear cross-
over between a fat-tailed distribution for small s and a Gaussian distribution for large s.

The authors would like to thank the Germany’s Federal Ministry for Education and Research (BMBF)
for funding this study under grant number 03SF0314. The presented results are part of the project
“Statistical analysis and stochastic modelling of turbulent gusts in surface wind”.



206 The European Physical Journal Special Topics

References

1. R. Thuillier, U.O. Lappe, J. Appl. Meteor. 3, 299 (1964)
2. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook (John Wiley, 2004)
3. T. Laubrich, F. Ghasemi, J. Peinke, H. Kantz [arXiv:0811.3337] (2008)
4. T. Laubrich, H. Kantz (2009) (to be published)
5. Lammefjord, Lammefjord data obtained from the Risø National Laboratory in Denmark,
http://www.risoe.dk/vea, through http://www.winddata.com. (1987)

6. J.M. Wallace, P.V. Hobbs, Atmospheric Science (Academic Press Elsevier, 2006)
7. U. Frisch, Turbulence (Cambridge University Press, 1995)
8. S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)
9. G. Taylor, Proc. R. Soc. London Ser. A 164, 476 (1938)
10. R. Stull, An Introduction to Boundary Layer Meteorology (Springer, 1999)
11. C. Renner, J. Peinke, R. Friedrich, J. Fluid Mech. 433, 383 (2001)
12. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941)
13. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 16 (1941)
14. A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962)
15. B. Castaing, Y. Gagne, E.J. Hopfinger, Physica D 46, 177 (1990)
16. F. Boettcher, C. Renner, H.P. Waldl, J. Peinke, Bound.-Layer Meteor. 108, 163 (2003)
17. F. Boettcher, S. Barth, J. Peinke, Stoch. Environ. Res. Risk Assess. 21, 299 (2007)
18. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)
19. C. Beck, E.G.D. Cohen, H. Swinney, Phys. Rev. E 72, 056133 (2005)
20. S.M.D. Queiros, Physica A 385, 191 (2007)
21. C. Beck, E.G.D. Cohen, S. Rizzo, Europhysics News 36, 189 (2005)
22. W. Daniel, Applied Nonparametric Statistics (PWS-Kent, 1990)
23. L. Miller, J. Amer. Statist. Assoc. 51, 111 (1956)
24. C.W.J. Granger, P. Newbold, J. R. Statist. Soc. Ser. B 38, 189 (1976)


	1 Atmospheric boundary layer and wind speed data
	2 Statistical analysis of wind speed
	3 Stochastic process simulating wind speed
	4 Conclusion
	References

