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Abstract. We briefly review our recent work on how to quantify and how to
measure the entanglement inscribed into quantum states which evolve under inco-
herent environment coupling.

1 Introduction

Quantum entanglement is considered to be a central resource of quantum information process-
ing: entanglement is a key ingredient in quantum teleportation [1], and is used to perform
conditional two-qubit operation, which are primordial for running a quantum algorithm [2].
There is a large body of literature on the abstract, rather mathematical theory of entanglement
[3] – of pure as well as of mixed states –, and equally so can one find a considerable number of
proposals on manipulating the entanglement of two qubits [4] – the smallest quantum systems
which can exhibit quantum correlations. On the experimental side, single and two-qubit oper-
ations are by now very well controlled [5], and the important challenges arise with the control
and characterization of the entanglement inscribed in quantum systems with an ever larger
number of constituents [6–8]: to outperform a classical supercomputer, also an all-purpose
quantum computer has to run on large quantum registers, i.e., several hundred or thousand
rather than two qubits. Yet, very little is known on the time evolution of entanglement under
realistic conditions, in a multicomponent quantum system of increasing size.
Indeed, if we take it as granted that entanglement is a central resource, some kind of

special “fuel” on which a quantum computing engine runs, then the central question for the
experimentalist is the time scale on which this fuel is exhausted, as compared to the time
scale needed to perform the actual algorithmic task. Since entanglement is a manifestation
of coherent superpositions of many-particle eigenstates of a quantum register, it is clear that
decoherence will be detrimental for quantum entanglement, and a quantitative theory to assess
entanglement decay rates under environment coupling is very much in need. Since, in addition,
the spectral density of a composite quantum system increases with its number of constituents,
it is also clear that a multicomponent system will respond differently to environmental noise
than a two-qubit system, and very general arguments suggest that the larger the system the
faster the decay of multiparticle coherences [9,10], and thus of entanglement. Therefore, if we
take the perspective of a quantum computer seriously, then the theoretical challenge ahead is
to develop a theory which focusses on the scaling properties of entanglement, and notably of
its robustness against environment coupling, with increasing systems size [11,12]. Since the
Hilbert space dimension of a composite quantum system grows exponentially both with its
number of constituents as well as with the dimension of the individual factor spaces, this is a
highly nontrivial challenge, both for experiment and theory: on the theoretical side, one needs
to find computationally efficient tools for the characterization of entanglement, such as to
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Fig. 1. Time evolution of the entanglement of a maximally entangled two-qubit state under environ-
ment coupling [20]. The insets show the statistical operator representing the quantum state at different
times. While entanglement decays monotonously, the coherences of the density matrix are redistrib-
uted, but not clearly damped out. This highlights the nonlinear dependence of the state’s entanglement
on the statistical operator (Courtesy of C. Roos).

inspire experimental strategies to identify specific classes of non-classical correlations inscribed
in arbitrary quantum states of increasing dimension – without requiring a complete knowledge
of the state [13–16]. Thus, the theoretical focus on the scaling properties of entanglement is
intimately related to the experimental need for efficient ways of entanglement measurement.
Finally, we should be aware of the fact that the desire to run a large scale quantum computer

implies that we aim at exploring quantum interference effects on a macroscopic, or, at least,
mesoscopic scale. The fact that coherent superpositions of macroscopic objects in the world
around us are scarce, provides another very explicit hint to the problems yet to overcome.
Necessarily, large composite systems are always in some sense open systems, i.e., they are
coupled to uncontrolled/unobserved degrees of freedom, what implies decoherence [17]. In this
sense, the possibility of building a real quantum computer is conditioned on our ability to
avoid the quantum-classical transition on macroscopic scales, and this immediately clarifies
why experiments on the controlled creation of many-particle entanglement [6–8] and on the
coherence properties of heavy particles represent just two faces of the same medal [18].

2 Quantifying entanglement

Before we can address the dynamical evolution of entanglement, we need efficient tools to
distinguish separable from entangled states, and to quantify the amount of entanglement
inscribed into a given state. This problem has a complete solution for the simplest possible case
of two qubits – i.e., for systems living on a four dimensional tensor Hilbert space H = H1⊗H2
composed of two two-dimensional Hilbert spaces –, and mixed state entanglement can be
derived purely algebraically from the density matrix of such 2 × 2 system [19]. Indeed, first
experiments did monitor the time evolution of the entanglement of an initially maximally
entangled 2 × 2 state under environment coupling, through direct tomography of the density
matrix at different times t [20–22]. The insets in Fig. 1 show the redistribution of the coherences
of the density matrix as time evolves, together with the monotonous decrease of entanglement
[20]. Remarkably, however, it is not obvious from the density matrix’ time evolution that the
coherences really decay – while entanglement does: this is an immediate manifestation of the
nonlinear dependence of entanglement on the density operator, which is at the very heart of
the entanglement characterization problem, and which turns into a truly hard problem for
systems of larger dimension, where tomography no more provides a realistic strategy for state
analysis, simply due to the exponential increase of the required experimental resources.
The matter thus becomes much more involved when we increase the number of subsystems

or the subdimension of the factor spaces Hi. However, it is this latter problem which we have
to tackle if we want to talk about large scale quantum computing! Therefore, let’s look a bit
deeper into this subject.
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Fig. 2. Schematic representation of the two-copy scheme for a multipartite system. The self-adjoint
operator A is composed of products of symmetric and antisymmetric projectors P on the
(anti)symmetric subspaces of the first and second copy of either one of the subsystems 1 . . . N , with
the constraint that A be symmetric under the simultaneous exchange of the copies of all subsystems

[26]. For N = 2, A is given by the product of two antisymmetric operators: A ∝ P (1)− ⊗ P (2)− .

2.1 Entanglement measures

A pure state |Ψ〉 on a bipartite Hilbert space H = H1 ⊗ H2 is called separable if it can be
written as a product |Ψ〉 = |φ〉 ⊗ |η〉 of any two vectors |φ〉 ∈ H1 and |η〉 ∈ H2; otherwise,
the state is entangled. Possible measures of pure state entanglement are [23] provided, e.g., by
the von Neumann entropy of the reduced density matrix of either one of the subsystems, or
by concurrence. They have a nice interpretation in terms of the information loss induced by
tracing out one of the subsystems, and concurrence is defined as

c(Ψ) =
√
2(1− trρ2r) , (1)

in terms of the reduced density matrix ρr of one of the subparties. In particular, this defini-
tion vanishes precisely for separable states, and is immediately amenable to bipartite systems
of arbitrary finite dimension [24]. In the following, we will use concurrence as our preferred
entanglement measure, essentially since its definition allows for algebraic manipulations which
would be much harder, e.g., for the von Neumann entropy.
It may appear suggestive to generalize concurrence for mixed states

ρ =
∑
j

pj |Ψj〉〈Ψj | , (2)

as the weighted average of the pure state concurrences of its pure state components. However,
since the pure state decomposition of mixed states is not unique, this is not a viable strategy.
Rather, one has to take the infimum over all possible pure state decompositions [25],

c(ρ) = inf
{pj ,Ψj}

∑
j

pjc(Ψj) , (3)

which has an explicit solution in the 2 × 2 case [19], but in general defines an optimization
problem of rapidly increasing dimension as the system dimension increases. Furthermore, a
numerical solution of the optimization problem will always yield upper bounds for concurrence,
what cannot help to distinguish separable from entangled states: what is needed are lower
bounds.
These can be derived once one realizes that pure state concurrence can be reformulated as

c(Ψ) =
√
〈Ψ | ⊗ 〈Ψ |A|Ψ〉 ⊗ |Ψ〉 , (4)

with a self-adjoint operator A acting on two copies of the state to be analyzed [26], see Fig. 2.

A ∝ P (1)− ⊗P (2)− , with P (1,2)− the projectors on the antisymmetric subspaces of the space of the
first and second copy of subsystems 1 or 2. One easily verifies that, also in this formulation,
c(Ψ) vanishes exactly for separable states.
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Fig. 3. Decay of the three-partite concurrence c3 [26,28] of three-partite W (solid lines) and GHZ
(dashed lines) states [10], where each register qubit is individually coupled (with strength Γ ) to its
private zero temperature (circles), infinite temperature (squares), or dephasing (triangles) environment
– therefore, the qubits cannot interact through the environment. Concurrence was here calculated
by use of the quasipure approximation [30], which is the computationally “cheapest” entanglement
quantifier of our hierarchy of lower bounds. However, the accuracy of the approximation was found to
be excellent by direct comparison to optimal lower and upper bounds of concurrence at different times.

Indeed, the algebraic structure of (4) lends itself for an immediate generalization for multi-
partite systems, where A is composed of products of symmetric and antisymmetric projectors
with the constraint that it be symmetric under exchange of the copies of all subsystems, since
|Ψ〉 ⊗ |Ψ〉 is symmetric under this operation (see Fig. 2). Finally, mixed state concurrence of a
general multipartite mixed state ρ is given by

c(ρ) = inf
{pj ,Ψj}

∑
j

pj

√
〈Ψj | ⊗ 〈Ψj |A|Ψj〉 ⊗ |Ψj〉 , (5)

where A needs further specification for the specific type of multipartite correlation to be
addressed [27,26]. Once again, c(ρ) vanishes exactly for completely separable multipartite
states, for any specific definition of A under the above symmetric constraint. Whether this gen-
eral definition of c(ρ) also defines an entanglement monotone is a much more intricate question,
which is addressed in detail in [28]. Though, all multipartite concurrences which we shall quan-
titatively evaluate in the sequel of the present review indeed are entanglement monotones [28].
Equation (5) allows for the derivation of a hierarchy of lower bounds of mixed state

concurrence of multipartite quantum systems of arbitrary finite dimension, which are obtained
by optimization over a considerably reduced optimization space as compared to eq. (3) [29,26],
or even by simply diagonalizing a matrix of the same dimension as ρ [30]. Since the general
definitions of the relevant algebraic quantities are rather involved, the interested reader is
refered to the original papers [29,26,30] for details. This hierarchy helps quite a bit in reducing
the computational effort for efficient entanglement characterization, and allowed us to address,
e.g., the robustness of the entanglement (quantified by its decay rate) of maximally entangled
bipartite [31], W, GHZ [10], or elliptic island states [32] in quantum systems encoded in
quantum registers of increasing size N , the time evolution of bipartite entanglement generated
by random Hamiltonians [30], and equally so the performance of entanglement creation
schemes [26], under incoherent coupling to public or private baths. As an example, Fig. 3

shows the decay of the entanglement of three-partite |W〉 = (|001〉 + |010〉 + |100〉)/√3 and
|GHZ〉 = (|000〉 + |111〉)/√2 states, when each qubit is coupled to a private bath (i.e., the
qubits cannot interact through the environment) with coupling strength Γ [10].
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Fig. 4. Scaling of the entanglement decay rate γ of GHZ (top) and W (bottom) states with the reg-
ister size N , for a zero temperature (circles), infinite temperature (squares), and dephasing (triangles)
environment [10]. As to be expected, γ in general increases with N , except for W states coupled to
zero temperature and dephasing environments, where γ is independent on N . This is essentially due to
the fact that W states bear only one excitation, independently of N . γ can be derived analytically for
GHZ states under dephasing, and for W states under zero temperature environment coupling [10,31],
what once again allows for an independent verification of our lower entanglement bound by quasipure
approximation.

Different decoherence processes – spontaneous emission, noise, and dephasing – were
modeled with the standard master equation formalism (see eq. (7) hereafter, with suitably
chosen operators Jk), and the N-partite concurrence [10,26]

cN (Ψ) = 2
1−N2

√
(2N − 2)〈Ψ |Ψ〉2 −

∑
j

trρ2j , (6)

was used as an entanglement measure (here for N = 3) [26,28], where the sum over j runs
over all nontrivial reduced density matrices ρj deduced from Ψ . For all cases, we can extract
a typical decay rate γ, at least for short times, as illustrated in Fig. 3. The same can be done
for W and GHZ states on larger N -qubit quantum registers, and Fig. 4 shows the dependence
of the decay rates on the register size N .
As to be expected, γ grows with N in most cases, what highlights the difficulty to construct

a large scale quantum computer. However, we also observe that W states under dephasing
and spontaneous emission exhibit entanglement decay rates independent of N , what identifies
these states as somewhat more robust under the scalability requirement.
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Fig. 5. Schematic representation of the time evolution of different quantum jump trajectories in the
unraveling approach. At each time step, a quantum jump occurs with probability δp, and no event is
observed with probability 1 − δp. An ensemble of quantum trajectories provides an ensemble of pure
states |ψinδt〉 at time t = nδt, which is a valid decomposition of the density matrix at that time.

2.2 Entanglement dynamics revisited

With the above, we can quantify entanglement dynamics in arbitrary finite dimensional quan-
tum systems, but still need to rely on the time evolution of the density matrix ρ(t) itself: at
each time t, we apply the above prescription (5, 6) to deduce the state’s entanglement from ρ(t).
Instead, we would like to develop a scheme for the direct monitoring of entanglement evolution
in real time. As we will show in the present section, this can be achieved by unraveling [33]
entanglement in a quantum trajectory treatment.
To set the scene, let us remember that the wide-spread description of incoherent state evo-

lution by a master equation of the type

dρ

dt
= − i
�
[Hsys, ρ] +

∑
k

1

2

(
2Jk ρ J

†
k − J†k Jk ρ− ρ J†k Jk

)
(7)

– which we used to generate the results of Figs. 3 and 4 – can be substituted by a stochastic
pure state evolution of the initially pure state |Ψ0〉, mediated by the quantum jump operators Jk
and a non-Hermitian, free evolution generated by Heff = Hsys− i�

∑
k J
†
kJk/2 [33]. A quantum

jump occurs under the action of Jk on |Ψ(t)〉, with probability δpk, and is associated with the
detection of a specific event, e.g., the emission of a spontaneous photon. If no event is detected,
with probability 1−∑k δpk, |Ψ(t)〉 evolves under the action of Heff , always remaining in a pure
state. Since the occurence of a given event is probabilistic, a single pure state trajectory evolves
stochastically, and the state ρ(t) generated by the master equation is recovered after lumping
together the stochastically evolved states |Ψ(t)〉, for different realizations of the stochastic
jump process, as illustrated in Fig. 5. Thus, the quantum jump approach immediately yields
a pure state decomposition of ρ(t), for arbitrary t, which is completely determined by the
detection record of the quantum jumps. Since pure state concurrence of the individual pure
states |Ψ(t)〉 is easily evaluated, at least in the bipartite case, the detection record amounts to
a direct monitoring of entanglement evolution under incoherent dynamics. The average pure
state concurrence after a first time step δt reads:

c(δt) =

(
1−

N∑
k=1

δpk

)
c(ΨN+1δt ) +

N∑
k=1

δpkc(Ψ
k
δt). (8)

But . . . what about the infimum in eq. (3)? Is the pure state decomposition of ρ(t) obtained
by the stochastic pure state evolution optimal in that sense? Of course, in general, it isn’t, but
we can explore the invariance of the master equation (7) under the following transformation
of the jump operators:

Lk,± =
µk Id±

∑
i UkiJi√
2

, (9)
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Fig. 6. Time evolution of the bipartite mixed state concurrence for initial states |Ψ0〉 = (|00〉+|11〉)/√2

(c̄(t = 0) = 1) and |Ψ0〉 =
√

1/8|00〉 +
√

7/8|11〉 (c̄(t = 0) � 0.7), under incoherent coupling to a
zero temperature environment (i.e., decoherence induced by spontaneous emission). Continuous lines
represent exact solutions [19,26,34]; filled squares stem from a randomly chosen unraveling. Symbols
show the results for improving unravelings with increasing |µ1| = |µ2| = 0.8 (filled diamonds), 1.0
(filled pyramids), 3.0 (filled circles), 4.0 (open squares), 7.0 (open circles), and 15.0 (open diamonds).
The dashed line shows the time evolution of |Λ(t)| = |λ1 −∑4

i=2 λi| beyond the disentanglement time
td, where the λj are the singular values of the matrix 〈Ψ∗k |σy ⊗ σy|Ψi〉 [26], constructed from the pure
state decomposition of ρ(t). 1000 quantum trajectories were accumulated to generate the unraveling
data, in all cases.

with the complex scalar µ, and the left unitary matrix U . Now we can minimize c(δt), by
variation of the parameters of the transformation (9), and compare the time evolution under
the thus optimized unraveling with the time evolution of concurrence when deduced from the
density matrix ρ(t) propagated by the master equation (7). Fig. 6 shows such comparison for
two different initial states of two qubits, coupled to a zero temperature environment – i.e.,
the only source of quantum jumps are spontaneous emission events from either one of the two
qubits. For sufficiently large µ1 = µ2 = µ ≥ 3 and

U =

(
αeiθ βeiϕ

−βe−iϕ αe−iθ
)
, (10)

with α = β = 1/
√
2, θ + ϕ = π/2 = −2χ + σ, σ = arg(ψ211/r(Ψ0)), r(Ψ0) = ψ00ψ11 − ψ01ψ10,

|Ψ0〉 = ψ00|00〉 + ψ01|01〉 + ψ10|10〉 + ψ11|11〉, and c(Ψ0) = 2|ψ01ψ10 − ψ00ψ11|, the agreement
is perfect, for all times, despite the fact that we performed the optimization of the jump
operators only locally in time, at t = δt. Note that this is a highly nontrivial result, since,
first, not all pure state decompositions of a given density matrix are physically accessible [35]
(i.e., in other words, reachable by paramterizations of Lk,±), and, second, there is no clear a
priori reason why the optimal unraveling should be time-independent, what it is, by virtue of
our present results. Note that we obtain qualitatively the same results for different initial states
and different types of environment coupling, e.g., dephasing and infinite temperature baths,
as well as for tripartite qubit states under zero temperature and dephasing noise [34]. This
suggests that the time evolution of entanglement is completely determined by the initial
condition and the type of environment coupling, what would imply a considerable simplifi-
cation of the characterization of mixed state entanglement. Further studies will seek for a
mathematical proof of this conjecture, and also for its generalization for higher dimensional
bi- or multipartite systems.
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Fig. 7. Relative abundance of detections of the first photon’s copies in the symmetric (ψ+, φ±)
and antisymmetric (ψ−) Bell states, for different initial states |Ψ〉 = α|0〉 ⊗ |1〉 + β|1〉 ⊗ |0〉, with
α = 0.71± 0.02, 0.53± 0.01, 0.35± 0.01, 0.99± 0.03, from a) to d) [16].

3 Observable bipartite entanglement

Let us finish with a short discussion of yet another strategy for the direct experimental
detection of entanglement, which is inspired by the reformulation (4) of pure state concurrence.
Obviously, since A is a selfadjoint operator, concurrence can be understood as the expectation
value of A with respect to a two-fold copy of the state |Ψ〉 to be analyzed, and is thus directly
accessible through a projective measurement in this extended Hilbert space. Indeed, since

P
(1)
− ⊗ P (2)− + P (1)− ⊗ P (2)+ = P

(1)
− ⊗ Id = P (1)− ⊗ P (2)− on |Ψ〉 ⊗ |Ψ〉 (since P (1)− ⊗ P (2)+ is antisym-

metric, and therefore vanishes on |Ψ〉⊗|Ψ〉), c(Ψ) can be directly measured by projecting either
one of the two subsystems together with its copy on the associated antisymmetric subspace,

i.e., by evaluating the expectation value of P
(1)
− ⊗ Id (or of Id⊗ P (2)− ). This has actually been

done [16], in a proof of principle experiment on hyperentangled twin photons, where two copies
of the same quantum state |Ψ〉 = α|0〉 ⊗ |1〉 + β|1〉 ⊗ |0〉 were inscribed in two independent
degrees of freedom, the polarization and the momentum, of one and the same physical twin
photon pair. The antisymmetric subspace of the first photon and its copy is spanned by the
antisymmetric Bell state |ψ−〉 ∝ | →〉⊗ |R〉− | ↑〉⊗ |L〉, and the concurrence of |Ψ〉 is therefore
directly given by the probability to detect the first photon and its copy in the state |ψ−〉
(where we identify, without loss of generality, | →〉 and |L〉 with |0〉, and | ↑〉 and |R〉 with
|1〉, respectively). For normalization, also the probability to detect the symmetric Bell states
(which complete the four dimensional Bell basis) needs to be recorded in the experiment. This
measurement provides an unknown state’s |Ψ〉 concurrence – the experimentalist who performs
the projective measurement only needs to be sure that he is given a faithful two-fold copy
of |Ψ〉, but needs no a priori knowledge on α and β [16,36]. Furthermore, the measurement
protocol will succeed for arbitrary pure initial states, not necessarily of the type chosen in this
specific experiment, and can be generalized to estimate mixed state entanglement [15].
Fig. 7 shows the relative abundance of antisymmetric and symmetric Bell state detections,

for different values of α (β is then fixed by normalization). Fig. 8 collects the resulting values
of concurrence, as a function of |α|, and shows perfect agreement between experiment and
theory. Thus, our algebraic reformulation (4) allowed for the first direct measurement of the
entanglement of an unknown pure state, without state tomography. Since (4) is invariant
under an increase of the subspaces’ dimensions, this paves the way for the direct experimental
assessment of the entanglement of unknown quantum states in higher dimensional systems.
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Fig. 8. Experimentally measured concurrence (filled circles) of the state |Ψ〉 = α|0〉 ⊗ |1〉+ β|1〉 ⊗ |0〉
vs. |α|, compared to the theoretical expectation c = 2|α|√1− |α|2 (continuous line) [16].

4 Conclusion

We introduced various tools and methods for the efficient characterization of quantum
entanglement. However, while we initially insisted in the fact that the real challenge lies in
the quantitative characterization of the entanglement of higher dimensional bipartite, or multi-
partite systems, not all of our results do already meet this requirement: The general validity of
the unraveling of entanglement also for higher dimensional and/or multipartite systems remains
to be shown, and also the direct projective measurement of entanglement on a two-fold copy
of the state under scrutiny has hitherto been performed only on pairs of qubits. Hence, lots of
hard and challenging work remains to be done, both on the experimental and on the theoretical
side: As for the latter, we still need a mathematical proof that all our lower bounds derived
from (5) are strictly positive for non-separable states [26], and have to incorporate unavoidably
finite detection efficiencies in our unraveling scheme, to make it directly applicable in state of
the art experiments.

The results summarized above are the product of a collective effort between Warsaw, Rio de Janeiro,
and Dresden. It is a great pleasure to acknowledge the many crucial contributions due to Olivier Brodier,
Marc Busse, Luiz Davidovich, Rafa�l Demkowicz-Dobrzański, Ignacio Garcia-Mata, Marek Kuś, Paulo
Souto Ribeiro, Carlos Viviescas, and Steven Walborn. The collaboration between Dresden and Warsaw
was funded by VolkswagenStiftung, the one between Dresden and Rio by the DAAD, within a PostDoc
fellowship (F.M.), and the PROBRAL program.
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6. H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol,

M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005)



56 The European Physical Journal Special Topics

7. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M.
Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005)

8. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang,
J.-W. Pan, Nat. Phys. 3, 91 (2007)

9. R. Alicki, Chem. Phys. 322, 75 (2006)
10. A.R.R. Carvalho, F. Mintert, A. Buchleitner, Phys. Rev. Lett. 93, 230501 (2004)
11. C. Simon, J. Kempe, Phys. Rev. A 65, 052327 (2002)
12. W. Dür, H.-J. Briegel, Phys. Rev. Lett. 92, 180403 (2004)
13. O. Gühne, M. Reimpell, R.F. Werner, Phys. Rev. Lett. 98, 110502 (2007)
14. N. Kiesel, C. Schmid, U. Weber, O. Gühne, G. Tóth, R. Ursin, H. Weinfurter, Phys. Rev. Lett.
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