Skip to main content
Log in

Abstract.

We construct an individual-based kinematic model of rolling migratory locust swarms. The model incorporates social interactions, gravity, wind, and the effect of the impenetrable boundary formed by the ground. We study the model using numerical simulations and tools from statistical mechanics, namely the notion of H-stability. For a free-space swarm (no wind and gravity), as the number of locusts increases, the group approaches a crystalline lattice of fixed density if it is H-stable, and in contrast becomes ever denser if it is catastrophic. Numerical simulations suggest that whether or not a swarm rolls depends on the statistical mechanical properties of the corresponding free-space swarm. For a swarm that is H-stable in free space, gravity causes the group to land and form a crystalline lattice. Wind, in turn, smears the swarm out along the ground until all individuals are stationary. In contrast, for a swarm that is catastrophic in free space, gravity causes the group to land and form a bubble-like shape. In the presence of wind, the swarm migrates with a rolling motion similar to natural locust swarms. The rolling structure is similar to that observed by biologists, and includes a takeoff zone, a landing zone, and a stationary zone where grounded locusts can rest and feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • D. Tilman, P. Kareiva (eds.), Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Princeton University Press, Princeton, NJ, 1998)

  • A. Okubo, D. Grünbaum, L. Edelstein-Keshet, in Diffusion and Ecological Problems, edited by A. Okubo, S.A. Levin (Springer, New York, 2001), Vol. 14, Interdisciplinary Applied Mathematics: Mathematical Biology, 2nd edn., Chap. 7, pp. 197–237

  • B. Uvarov, Grasshoppers and Locusts, Vol. 2 (Cambridge University Press, London, UK, 1977)

  • S.R. Joffe, Desert Locust Technical Series AGP/DL/TS/27, United Nations Food and Agriculture Organization (1997)

  • M. Collett, E. Despland, S.J. Simpson, D.C. Krakauer, Proc. Natl. Acad. Sci. 95, 13052 (1998)

    Google Scholar 

  • S.J. Simpson, E. Despland, B.F. Hägele, T. Dodgson, Proc. Natl. Acad. Sci. 98, 3895 (2001)

    Google Scholar 

  • J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)

    Google Scholar 

  • J.S. Kennedy, Proc. Roy. Soc. Lond. B 235, 163 (1951)

    Google Scholar 

  • F.O. Albrecht, Polymorphisme Phasaire et Biologie des Acridiens Migrateurs, Les Grands Problèmes de la Biologie (Masson, Paris, 1967)

  • R.C. Rainey, Migration and Meteorology: Flight Behavior and the Atmospheric Environment of Locusts and other Migrant Pests, Oxford Science Publications (Clarendon Press, Oxford, 1989)

  • L. Edelstein-Keshet, J. Watmough, D. Grünbaum, J. Math. Biol. 36, 515 (1998)

    Google Scholar 

  • A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros, J. Math. Biol. 47, 353 (2003)

    Google Scholar 

  • D. Ruelle, Statistical Mechanics: Rigorous Results, Mathematical Physics Monograph Series (W.A. Benjamin, New York, 1969)

  • M.R. D'Orsogna, Y.L. Chuang, A.L. Bertozzi, L. Chayes, Phys. Rev. Lett. 96, 104302.1 (2006)

    Google Scholar 

  • S. Sakai, Biophys. 13, 82 (1973)

  • R. Suzuki, S. Sakai, Biophys. 13, 281 (1973)

  • A. Okubo, W. Sakamoto, T. Inagaki, T. Kuroki, Bull. Jpn. Soc. Sci. Fish 9, 1369 (1977)

    Google Scholar 

  • T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Google Scholar 

  • G. Grégoire, H. Chaté, Y. Tu, Phys. Rev. E 64, 011902.1 (2001)

    Google Scholar 

  • H. Levine, W.J. Rappel, I. Cohen, Phys. Rev. E 63, 017101.1 (2001)

    Google Scholar 

  • F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. E 64, 021110.1 (2001)

    Google Scholar 

  • I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)

    Google Scholar 

  • U. Erdmann, W. Ebeling, V.S. Anishchenko, Phys. Rev. E 65, 061106.1 (2002)

    Google Scholar 

  • M. Aldana, C. Huepe, J. Stat. Phys. 112, 135 (2003)

    Google Scholar 

  • U. Erdmann, W. Ebeling, Fluct. Noise Lett. 3, L145 (2003)

  • G. Grégoire, H. Chaté, Y. Tu, Physica D 181, 157 (2003)

    Google Scholar 

  • J.K. Parrish, S.V. Viscido, D. Grünbaum, Biol. Bull. 202, 296 (2003)

    Google Scholar 

  • G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702.1 (2004)

    Google Scholar 

  • K. Kawasaki, Math. Sci. 16, 47 (1978)

    Google Scholar 

  • A. Okubo, Diffusion and Ecological Problems (Springer, New York, 1980)

  • M. Mimura, M. Yamaguti, Adv. Biophys. 15, 19 (1982)

    Google Scholar 

  • R.D. Passo, P. Demottoni, J. Math. Biol. 20, 103 (1984)

    Google Scholar 

  • T. Ikeda, Proc. Jpn. Acad. A 60, 46 (1984)

    Google Scholar 

  • W. Alt, Nonlinear Anal. 9, 811 (1985)

  • T. Ikeda, J. Appl. Math. Jpn. 2, 111 (1985)

    Google Scholar 

  • J. Satsuma, M. Mimura, J. Phys. Soc. Jpn. 54, 894 (1985)

    Google Scholar 

  • T. Ikeda, T. Nagai, J. Appl. Math. Jpn. 4, 73 (1987)

  • Y. Hosono, M. Mimura, SIAM J. Math. Anal. 20, 845 (1989)

    Google Scholar 

  • D. Grünbaum, A. Okubo, in Frontiers in Mathematical Biology, edited by S.A. Levin, Vol. 100, Lecture Notes in Biomathematics (Springer-Verlag, 1994), pp. 296–325

  • J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Google Scholar 

  • G. Flierl, D. Grünbaum, S. Levin, D. Olson, J. Theor. Biol. 196, 397 (1999)

    Google Scholar 

  • A. Mogilner, L. Edelstein-Keshet, J. Math. Bio. 38, 534 (1999)

    Google Scholar 

  • R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 028181.1 (2002)

    Google Scholar 

  • R.A. Simha, S. Ramaswamy, Physica A 306, 262 (2002)

    Google Scholar 

  • P.C. Bressloff, SIAM J. Appl. Math. 64, 1668 (2004)

    Google Scholar 

  • C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004)

    Google Scholar 

  • Y. Tyutyunov, I. Senina, R. Arditi, Am. Nat. 164, 722 (2004)

    Google Scholar 

  • C.M. Topaz, A.L. Bertozzi, M.A. Lewis, Bull. Math. Biol. 68, 1601 (2006)

    Google Scholar 

  • R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69, 1537 (2007)

    Google Scholar 

  • Y.L. Chuang, M.R. D'Orsogna, D. Marthaler, A.L. Bertozzi, L.S. Chayes (2007) (preprint)

  • W. Ebeling, U. Erdmann, Complexity 8, 23 (2003)

    Google Scholar 

  • N. Komin, U. Erdmann, L. Schimansky-Geier, Fluct. Noise Lett. 4, L151 (2004)

  • U. Erdmann, W. Ebeling, A.S. Mikhailov, Phys. Rev. E 71, 051904.1 (2005)

    Google Scholar 

  • L. Schimansky-Geier, W. Ebeling, U. Erdmann, Acta Phys. Polon. B 36, 1757 (2005)

    Google Scholar 

  • J.A. Beecham, K.D. Farnsworth, J. Theor. Biol. 198, 533 (1999)

    Google Scholar 

  • A.J. Bernoff, C.M. Topaz (2007) (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Topaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topaz, C., Bernoff, A., Logan, S. et al. A model for rolling swarms of locusts. Eur. Phys. J. Spec. Top. 157, 93–109 (2008). https://doi.org/10.1140/epjst/e2008-00633-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00633-y

Keywords

Navigation