Skip to main content
Log in

Water confined in mesoporous silica glasses: Influence of temperature on adsorption/desorption hysteresis loop and fluid structure

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

In natural as well as industrial processes, water is frequently confined in silica porous materials with pore sizes in the nanometer scale. Understanding the confinement effects on the fluid properties is a fundamental issue, helpful to optimize the industrial processes. The molecular simulation is a powerful tool to study complex polar fluid like water at the atomic scale. The water adsorption/desorption properties in a mesoporous silica glass are investigated by means of Grand Canonical Monte Carlo simulations (GCMC). The SPC and PN TrAZ potential are used to describe water-water and water-silica interactions. The numerical sample of mesoporous silica glass (pore size: 3.6nm) was obtained by off-lattice reconstruction, known to reproduce in a realistic way the geometrical complexity of high specific surface Vycor (pore size distribution, pore interconnections, etc). The intermolecular potential is shown to reproduce the experimental data at 300K (adsorption isotherm and isosteric heat of adsorption). The water structure is analyzed and confinement effects are emphasized. The temperature influence is studied: the hysteresis loop is shown to shrink with an increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573-1659 (1999)

    Article  ADS  Google Scholar 

  • S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosimetry (Academic Press, New York, 1982)

  • F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids (Academic Press, London, 1999)

  • P. Levitz, Adv. Colloid Interface Sci. 76/77, 71-106 (1998)

    Google Scholar 

  • P. Levitz, G. Ehret, S.K. Sinha, J.M. Drake, J. Chem. Phys. 95, 6151-6161 (1991)

    Article  ADS  Google Scholar 

  • R.J.-M. Pellenq, B. Rousseau, P. E. Levitz, Phys. Chem. Chem. Phys. 3, 1207-1212 (2001)

    Article  Google Scholar 

  • S.H. Lee, P.J. Rossky, J. Chem. Phys. 100, 3334-3345 (1994)

    Article  ADS  Google Scholar 

  • E. Spohr, A. Trokhymchuk, D. Henderson, J. Electroanal. Chem. 450, 281-287 (1998)

    Article  Google Scholar 

  • M. Rovere, M.A. Ricci, D. Vellati, F. Bruni, J. Chem. Phys. 108, 9859-9867 (1998)

    Article  ADS  Google Scholar 

  • C. Hartnig, W. Witschel, E. Spohr, P. Gallo, M.A. Ricci, M. Rovere, J. Mol. Liquids 85, 127-137 (2000)

    Article  Google Scholar 

  • P. Gallo, M.A. Ricci, M. Rovere, J. Chem. Phys. 116, 342-346 (2002)

    Article  ADS  Google Scholar 

  • H. Landmesser, H. Kosslick, W. Storek, R. Fricke, Solid State Ionics 101-103, 271-277 (1997)

    Google Scholar 

  • M.J.D. Low, N. Ramasubramanian, J. Phys. Chem. 71, 730-737 (1967)

    Article  Google Scholar 

  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, in Intermolecular Forces, edited by B. Pullman (Dordrecht, Reidel, 1981), p. 331

  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926-935 (1983)

    Article  ADS  Google Scholar 

  • R.J.-M. Pellenq, D. Nicholson, J. Phys. Chem. 98, 13339-13349 (1994)

    Article  Google Scholar 

  • R.J.-M. Pellenq, D. Nicholson, Mol. Phys. 95, 549-570 (1998)

    Article  Google Scholar 

  • J. Puibasset, R. J.-M. Pellenq, J. Chem. Phys. 118, 5613-5622 (2003)

    Article  ADS  Google Scholar 

  • J. Puibasset, R.J.-M.Pellenq, J. Chem. Phys. 119, 9226-9232 (2003)

    Article  ADS  Google Scholar 

  • J. Puibasset, R.J.-M. Pellenq, J. Phys.: Condens. Matter. 16, S5329-S5343 (2004)

    Google Scholar 

  • D. Nicholson, N.G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London, 1982)

  • J. Puibasset, R.J.-M. Pellenq, J. Chem. Phys. 122, 094704 (2005)

    Article  Google Scholar 

  • T. Takei, A. Yamazaki, T. Watanabe, M. Chikazawa, J. Colloid Interface Sci. 188, 409-414 (1997)

    Article  Google Scholar 

  • N. Markova, E. Sparr, L.Wadsö, Thermochim. Acta 374, 93-104 (2001)

    Article  Google Scholar 

  • D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, London, 1996)

  • T. Takei, K. Musaka, M. Kofuji, M. Fuji, T. Watanabe, M. Chikazawa, T. Kanazawa, Colloid Polymer Sci. 278, 475-480 (2000)

    Article  Google Scholar 

  • C.G.V. Burgess, D.H. Everett, S. Nuttall, Pure Appl. Chem. 61, 1845-1852 (1989)

    Google Scholar 

  • J.R. Errington, A.Z. Panagiotopoulos, J. Phys. Chem. B 102 7470-7475 (1998)

    Google Scholar 

  • J. Vorholz, V.I. Harismiadis, B. Rumpf, A.Z. Panagiotopoulos, G. Maurer, Fluid Phase Equilib. 170, 203-234 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puibasset, J., Pellenq, RM. Water confined in mesoporous silica glasses: Influence of temperature on adsorption/desorption hysteresis loop and fluid structure. Eur. Phys. J. Spec. Top. 141, 41–44 (2007). https://doi.org/10.1140/epjst/e2007-00013-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00013-3

Keywords

Navigation