
Eur. Phys. J. Spec. Top. (2023) 232:1753–1762
https://doi.org/10.1140/epjs/s11734-023-00848-y

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Integrable hydrodynamics of Toda chain: case of small
systems
Aritra Kundu1,2,a

1 Department of Physics and Materials Science, University of Luxembourg, 1511 Esch-sur-Alzette, Luxembourg
2 SISSA, Via Bonomea, 265-34136 Trieste, Italy

Received 4 January 2023 / Accepted 12 April 2023 / Published online 24 May 2023
© The Author(s) 2023

Abstract Passing from a microscopic discrete lattice system with many degrees of freedom to a mesoscopic
continuum system described by a few coarse-grained equations is challenging. The common folklore is to
take the thermodynamic limit so that the physics of the discrete lattice describes the continuum results.
The analytical procedure to do so relies on defining a small length scale (typically the lattice spacing) to
coarse grain the microscopic evolution equations. Moving from the microscopic scale to the mesoscopic scale
then requires careful approximations. In this work, we numerically test the coarsening in a Toda chain,
which is an interacting integrable system, i.e., a system with a macroscopic number of conserved charges.
Specifically, we study the spreading of fluctuations by computing the spatio-temporal thermal correlations
with three different methods: (a) using microscopic molecular dynamics simulation with a large number of
particles; (b) solving the generalized hydrodynamics equation; (c) solving the linear Euler scale equations
for each conserved quantities. Surprisingly, the results for the small systems (c) match the thermodynamic
results in (a) and (b) for macroscopic systems. This reiterates the importance and validity of integrable
hydrodynamics in describing experiments in the laboratory, where we typically have microscopic systems.

The hydrodynamic theory is a cornerstone for under-
standing coarse-grained phenomena in many-body sys-
tems. The local evolution of slowly changing fields of
conservation laws manifests the large-scale space–time
dynamics of the system. This old theory has found new
interest to predict transport in low-dimensional sys-
tems relevant to the current technologies. In noninte-
grable systems, with few relevant conservation laws, the
non-linear fluctuating hydrodynamic theory helps to
understand diffusive and non-diffusive transport [1]. In
integrable systems with many conservation laws, trans-
port is historically pictured as an underlying quasiparti-
cle undergoing deterministic scattering. Recent experi-
ments have made novel classical and quantum dynamics
in these systems [2]. However, such a formalism can only
sometimes allow for the analytical tractability of phys-
ically relevant quantities measured in the lab or com-
puter experiments. Integrable models such as harmonic
chain and hard point particle gas (or models reducible
to them) have been studied within the standard kinetic
theory formalism to connect this quasiparticle picture
and to understand coarse-grained transport properties
[3]. The assumed simplicity of a many-body integrable
system only sometimes implies the analytical tractabil-
ity of physically relevant quantities. The complexity
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arises for interacting systems such as the XXZ chain
or the Toda chain [4]. The solvability in these systems
is addressed using Lax pairs in classical [5] and using
the Bethe ansatz [6] in quantum setup but character-
izing, dynamical properties remain challenging using
these formalisms. It is typically expected that, because
of the lack of chaos in an integrable system, the trans-
port is ballistic in nature. This conjecture is verified in
the context of energy diffusion in integrable systems, for
example, in Toda chain, Lieb–Linegar gas, sinh-Gordan
model, etc. [7]. However, exceptions can be found for
example, in the integrable XXZ model which is inte-
grable but the spin transport is non-ballistic [8].

Early attempts to describe large-scale dynamics
included merging soliton theory with kinetic theory [9,
10]. The general picture of quasi-particles has recently
been incorporated in the development of integrable
hydrodynamics that address the full spatio-temporal
structure of fluctuations and beyond [11]. There is a
serious effort to extend hydrodynamic theory to the
quantum domain with growing interest in both experi-
mental and theoretical perspectives [12, 13]. Curiously,
experiments which contain few atoms are well described
by the hydrodynamic theory initially developed in the
thermodynamic limit. This simple question has no obvi-
ous answer and has deep connections to coarse graining
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and taking the hydrodynamic limit [14, 15]. For exam-
ple, the 1D Bose gas in the experiment [2] composed
of 40–250 atoms may not seem enough for the ther-
modynamic limit, but the experimental results can be
explained using integrable hydrodynamics.

In this work, we theoretically explore the question:
can a small system be described by hydrodynamic the-
ory? Our analysis is based on the classical integrable
hydrodynamics of the classical Toda chain as devel-
oped in [16–19]. The framework can be generalized to
other integrable systems, classical or quantum [20]. In
the quantum domain, numerical simulations with time-
dependent density matrix renormalization group of a
thermal expansion in the XXZ model lead to a similar
conclusion: hydrodynamic predictions with smooth ini-
tial conditions are accurate, even for small system sizes
[10].

Here, we construct the theoretical framework to
study spatio-temporal correlation in the Toda chain at
equilibrium with three different but related approaches.
The first uses a microscopic molecular dynamics (MD)
simulation similar to [21], the second is by solving
the generalized hydrodynamics equation for the Toda
chain [16, 17] and the third by solving the linear Euler-
scale equations considering all the conserved quanti-
ties. The three methods have different levels of diffi-
culty/accessibility using finite computational resources.
The MD simulations can be performed for a relatively
large chain (say N = 2048 particles) for ∼ 3000 com-
putational hours, while solving the integrodifferential
GHD equation in the thermodynamic limit is almost
instantaneous, but requires a large time to setup the
framework. Solving the Euler equation is limited to
a few atoms only and is of medium complexity. En
route to testing the accuracy of the three methods, we
find that a small system with N = 8 particles has a
spatio-temporal correlation at equilibrium almost indis-
tinguishable from that obtained using the GHD equa-
tion in the thermodynamic limit.

1 Euler-scale hydrodynamics

We discuss the classical many-body interacting inte-
grable system in a general setting, formulate the con-
served quantities, and give the prescription to construct
the Euler-scale hydrodynamics using their respective
currents.

1.1 Integrable ingredients

Consider a system of N particles with position qi

and momentum pi described by the Hamiltonian
H({pi, qi}). The system is integrable if the equation of
motion generated by the Poisson flow Ȧ = {A,H} can
be written in terms of the Lax equation, where the dots
refer to the time derivative. The common form of the
Lax equation with the Lax pairs denoted by the N ×N

matrices L± ≡ L±({pi, qi}) and M ≡ M({pi, qi}), is

L̇± = [M,L±] + λL±. (1)

Using the cyclic property of the trace, the global con-
served quantities of the system are Ik = Tr(L+L−)k.
Note that these conserved quantities are not unique
and are defined to a constant prefactor. These are cho-
sen such that the equilibrium correlation matrices for
energy have an order of magnitude governed by the
temperature T of the system. M is typically a skew-
symmetric square matrix, i.e., a matrix whose transpose
equals its negative. We are interested in determining
the local variations of these globally conserved quanti-
ties that describe the current flowing in and out of a
mesoscopic unit cell in the hydrodynamic regime.

1.2 Conserved quantities and currents

The local evolution of the conserved quantity (Ik =∑
i Ik

i ) can be written in the continuity form by observ-
ing that they follow the same evolution under the Lax
flow. Associated with the evolution, locally conserved
quantities Ik

i , is given as,

İk
i = (MIk)ii − (IkM)ii, (2)

where we define the local net currents flowing in and
out of the site i as (MIk)ii = jk

i and (IkM)ii =
jk
i+1, respectively. Typically for a H with only nearest-

neighbor interaction, M is a two-sided off-diagonal
matrix, resulting in the current flowing in and out of
neighboring sites. However, for a long-range interacting
system, the current flows in from all bonds. Another
interesting observation is that the Ik

i are increasingly
non-local in real space in a short-ranged system, i.e., Ik

i
depends on the product of lattice variables in between
i ± k, pictorially shown in Fig. 1. This will be impor-
tant to understand our results later. The eigenvalues
of the matrix L+L− are also conserved quantities, but,
however, they are not local in real space.

However, the eigenvalues of the L+L− matrix
only capture some of the conserved quantities for
translation-invariant Hamiltonian systems. There is an
additional conserved quantity called the stretch vari-
able, which is related to the inverse of the system
density and plays a major role in transport. For the

Fig. 1 Schematic representation of increasing non-locality
of conserved quantities of interacting integrable models with
local interaction. The orange lines show the support of two
sites for a local energy, while the grey line represents a larger
support for higher order conserved quantity with support of
four sites
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nearest-neighbor interaction, if the translation opera-
tor is defined as {T,H} = 0, then I0 =

∑
i(T − 1)qi

and the total momentum I1 =
∑

i pi are the additional
conserved quantity for systems with periodic boundary
conditions. It is important to exercise some caution:
Although these look like all the conserved quantities
of the system, there can be others that go unnoticed,
i.e., any function of the conserved quantity is also con-
served. See, for example, [22] for the role in the non-
linear Schrodinger equation also in the context of Toda
lattice, which was investigated in [23].

1.3 General Gibbs ensemble (GGE)

The integrable system at equilibrium is described for-
mally by GGE,

P ({pi, qi}) = Z−1exp

[

−
N∑

k=0

μkIk({pi, qi})

]

, (3)

where μk are the dual thermodynamic variables corre-
sponding to each conserved quantity. For example, a
system at Gibbs equilibrium is described by dual vari-
able temperature (μ2 = β, corresponding to Hamil-
tonian H ) and pressure (μ0 = P , corresponding to
stretch or the inverse density). In the rest of the text,
any average 〈.〉 is understood to be taken with respect
to the GGE characterized by β, P .

1.4 Euler-scale (fluctuating) hydrodynamics
at equilibrium

The coarse-grained large-scale space–time behavior of
the system describing the macroscopic evolution is gov-
erned by local fluctuations of the globally conserved
quantities. We are interested in the system prepared in
a GGE characterized by canonically conjugate thermo-
dynamic variables such as temperature, pressure, etc. In
equilibrium, each conserved quantity has a well-defined
average that does not change with time, i.e., ∂t〈Ik

i 〉 = 0.
This contributes to the trivial shift of the conserved
quantity of the system and is typically subtracted. The
local fluctuation of the total conserved quantity Ik is
denoted as uk

i (t) = Ik
i (t) − 〈

Ik
i

〉
. The linearized hydro-

dynamic Euler equations for the evolution of uk(x, t) in
the continuum limit are

∂tu
k(x, t) = ∂xjk(x, t), (4)

where we have switched from i → x in going to
the continuum and jk(x, t) = jk(x, t) − 〈

jk
x

〉
is

the local current fluctuation associated with the kth
conserved quantity. Following the standard prescrip-
tion of hydrodynamics to the first order in small
fluctuations, we express the current in terms of
the local fluctuations of the conserved fields, i.e.,
jk(x, t) =

∫
Akl(x, t, x′, t′)ul(x′, t′)dx′dt′, where the

kernel Akl(x, t, x′, t′) = δjk(x,t)
δul(x′,t′) encapsulates all infor-

mation of the evolution. We have neglected the higher
order expansions which are not important in the ballis-
tic scaling limit addressed in the current manuscript but
become important for super-diffusive transport [1, 24].
The kernel is generally hard to compute and much sim-
plification is obtained in the averaged current at equi-
librium, where the time dependence can be dropped
due to time translation invariance at equilibrium. The
dependence on positions is dropped using spatial invari-
ance and local interactions.

We switch to vector notation, with u the row vector
consisting of the local variation of conserved quantities
and A a square matrix with dimensions of the number
of conserved quantities. The average current over the
GGE at equilibrium is

j(x, t) = 〈A 〉u(x, t) + ∂xD(x, t)u(x, t) + B(x, t)ı(x, t).
(5)

Here 〈A 〉 =
〈

δj
δu

〉
can be interpreted as the projec-

tion of the current to the conserved quantity and ζ
a Gaussian white noise with 〈ζ(x, t)ζ(x′, t′)〉 = δ(x −
x′)δ(t−t′). The diffusion matrix D and the noise matrix
B are added phenomenologically and cannot be easily
derived from a microscopical picture. It may seem sur-
prising that these terms are not zero here, as the chaos
required for the origin of diffusion and noise is absent
in an integrable system. Typically, the origin of these
terms is argued as follows: the system is a fluid cell
where each cell is a ’mesoscopic’ region, i.e., a region of
finite extent, which is large compared to the distance
between particles, but small compared to the macro-
scopic spatial variation scales L. The dynamics inside
the fluid cell can be split into two parts: the first being
the net current flowing through the fluid cell. Each of
these currents are projected on the basis of conserved
quantities as discussed before. The second part comes
from the dynamics in the rapid variation in the fluid
cell due to interactions with neighbor cells. This can-
not be taken into account through the projection to the
conserved quantities and is modeled as dissipation and
noise.

This gives the Euler-scale hydrodynamic equation

u̇(x, t) = ∂x

[
〈A〉u(x, t) +

1

2
∂xD(x, t)u(x, t) +B(x, t)ı(x, t)

]
,

(6)

The above equation maintains conservation laws as in
the microscopic system, keeping the total fluctuation
across the system constant in time. Although this looks
formal, a more rigorous derivation using large devia-
tion theory can be obtained along the lines of [25].
Further, it can be shown that (with abuse of nota-
tion, we drop the average) the matrix A =

〈
δj
δu

〉
≡

〈ju〉〈u2〉−1, where we take time independent averages
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at GGE.1 The matrix 〈ju〉αβ = 〈jαuβ〉 − 〈jα〉〈uβ〉, and
〈
u2

〉
αβ

= 〈uαuβ〉 − 〈uα〉〈uβ〉 does not have any time
dependence and is computed at equilibrium. This has
a nice geometrical interpretation since the change of
curvature of the differential equation is interpreted as
a projection of the current to the conserved quantities
in the system. A more rigorous procedure will be to
follow the methods presented in [16, 25]. Before going
to the next section, where we discuss the ballistic cor-
relation, a small remark is that for a non-integrable
system like the Fermi–Pasta–Ulam (FPU) chain with
three conserved quantities, Eq. (6) consisting of 3 × 3
matrix corresponding to the stretch, density, and energy
conservation. In this case, truncating the local current
to linear order is not enough and one needs to keep
higher order terms. This gives rise to evolution with
non-ballistic scaling and is described by the non-linear
fluctuating hydrodynamic theory.

1.5 Ballistic spread of correlations

We are interested in spatio-temporal correlation func-
tions defined as C(x, t) = 〈u(x, t)uT(0,0)〉 which fol-
lows the evolution as Eq. (6). It is easy to check that
the total correlations dictated by this evolution is con-
stant, i.e., ∂t

∑
x C(x, t) = 0 as the system undergoes

conservative dynamics. In general, the late-time evo-
lution of the correlation functions follows a self-similar
scaling from C(x, t) = 1

tγ f( x
tγ ). It is expected [although

not obvious] that since our system is integrable, the
transport will be ballistic, that is, γ = 1. Using this
in Eq. (6), we see that the contribution of the diffu-
sive term is subleading for ballistic scaling, and we can
safely ignore the last terms and are left with

Ċ(x, t) = ∂xAC(x, t). (7)

1.6 Solving the correlation equations

The evolution of the correlations is now a straightfor-
ward linear equation and using the Fourier transforma-
tion f(x) = 1

L

∑L/2
−L/2 f(k)e−i2πk/L, x ∈ −L/2,−L/2+

1 . . . L/2 and f(k) =
∑L/2

−L/2 f(x)ei2πxk/L, k ∈
[−L/2,−L/2 + 1 . . . L/2], Eq. 7 becomes ∂tC(k, t) =
− 2πik

L AC(k, t). The solution is then written as

C(k, t) = e−2iπ k
LAtC(k, 0), (8)

where C(k, 0) is the Fourier transform of the equal time
correlations between the conserved quantities prepared
in GGE.

The matrix A is not symmetric; however, the eigen-
values are always real as expected physically from the
spatio-temporal symmetries of the system. This can be

1A naive way to see this is to multiply the numerator and
denominator by same fluctuation u and taking a average.

undertood as follows, when the equilibrium system is
flipped spatially and its currents are time reversed, it
behaves identically to the original system. This requires
that the eigenvalues of the matrix A are real. The
matrix C is a symmetric matrix. The inverse Fourier
transform then gives the time-dependent solution

C(x, t) =
1
L

L/2∑

−L/2

C(k, t)e−i2πkx/L. (9)

Taking the continuum limit and scaling the correlation
functions, this can be rewritten in scale-free form as

f(z) = tC
(
z =

x

t

)
=

1
2π

∫ π

−π

dk C(0, 0)e−i(Ak+kz).

(10)

It is convenient to go to a diagonal basis of A, with
RAR−1 = diag[λ], where R diagonalize the matrix.
The eigenvalues of the matrix A are physically rele-
vant quantities which can be interpreted as generalized
velocities of ballistic propagating modes. In FPU-like
non-integrable systems, with three conserved quanti-
ties, the matrix A is, for example, the 3 × 3 matrix:
the eigenvalues give the sound speed of the system
along with a zero eigenvalue, which corresponds to the
stationary heat peak of the system. In this case, the
Euler approximation does not reveal the structure of
the peaks itself, and one must go to higher order expan-
sions in the current to reveal the structure of the peaks.
In an integrable system with ballistic scaling, the sit-
uation is interesting, as there is only one timescale.
The system of equations gives rise to N nonzero veloc-
ities corresponding to the number of conserved quanti-
ties in the system. The eigenvalues are ordered in the
sense that λ1 ≤ λ2 . . . ≤ λN and form a linear space.
The spectral gaps between the eigenvalues are smaller
toward the edges and larger in the bulk. Taking these
into account renormalizes the amplitude of the scale-
free function at the kth site by λk+1 − λk. The scale-
free equation Eq. (10) can be written in terms of these
velocities as,

fij(z) =
∑

k

Ri,k(R−1C)k,j
δ(z − λk)
λk+1 − λk

. (11)

The normalization can also be understood from a more
physical point of view: Since the integrable dynam-
ics of the system are conservative, normalization elim-
inates the gauge degree of freedom from the eigen-
vectors, and we have the sum rule discussed above,∑

z f(z)dz = C(0, 0), where the dz = λk+1 − λk are
the discrete inverse density of the ordered eigenvalues
and the right-hand side is the value of correlations com-
puted at equilibrium. The density fluctuations are stud-
ied under the “unfolded” spectral gap of the eigenval-
ues of the integrable system akin to that used in ran-
dom matrix theory. A discussion of this formula for
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Fig. 2 Comparison of scaled equilibrium correlations in a
small finite sized Toda lattice with thermodynamic limit
results. The circle and the stars are data from numerically
solving the Euler-scale hydrodynamic equation at Gibbs
equilibrium as in Eq. 11 for small system sizes with N = 8
and N = 16. The noisy grey line is microscopic molec-
ular dynamics simulation of the macroscopic number of
N = 2048 particles with Toda interaction with an initial
condition average of 107 initial conditions from the Gibbs
distribution with T = 1, P = 1. The black dashed line is
obtained by numerically solving the thermodynamic GHD
equation. We see that the results of the finite short system
already have an excellent overlap with the exact results in
the thermodynamic limit

the Toda lattice is shown in Sect. 3. As we shall see,
the above formula for a small system size, i.e., when
N is of the order of O(1) reproduces the thermody-
namic limit spatio-temporal correlations. Note that we
have not taken any hydrodynamic or large system size
limit in the above formula. This makes us wonder if the
dynamics of small systems at equilibrium are sufficient
to be described by hydrodynamics.

2 Generalized hydrodynamics: GHD

Generalized hydrodynamics assume that the dynamics
of an integrable system can be described by a quasi-
particle which undergoes ballistic diffusion and a drift
with effective velocity. At thermal equilibrium, this is
obtained by averaging the extensive number of con-
served charges and their dynamics in a local GGE
state. The natural hydrodynamic fields are the density
of states (DOS) of the Lax matrix and the stretch, r ,
which we anticipated earlier.

For completeness, we first briefly review the basic
concepts of the GHD in classical systems following the
notation introduced in [16, 26]. The DOS is represented
as rρp(r), where the distribution ρp encodes all informa-
tion of the conserved quantities. Then the generalized

hydrodynamic equations are

∂tr + ∂xq1 = 0, ∂t(rρp) + ∂x

(
(veff − q1)ρp

)
= 0,

(12)

where q1 = r
∫

dw wρp(w) is the average momentum
of the system. The effective velocity is given by the
solution of the linear integral equation of the form

veff(r) = r + (Tρpv
eff )(r) − (Tρp)veff(r), (13)

with the operator T being the integral of kernel (K )
which takes into account the two-particle scattering
shift. It is defined as an integral transform on a function
ψ(w) as,

Tψ(w) =
∫

K(w − w′)ψ(w′) dw′, (14)

where the kernel K depends on the microscopic model
and can be computed by solving the large time asymp-
totic in two-particle scattering.

It is convenient to use a non-linear transformation
to go to a coordinate frame, where the hydrodynamic
equation becomes simplier. This is done by transforma-
tion to normal mode DOS ρn,

1 − Tρn(r) = (1 + Tρp(r))−1. (15)

Key to this description is to introduce a dressing trans-
formation that transforms the real valued function ψ
as

ψdr = (1 − Tρn)−1ψ. (16)

In this notation, the transformation between the normal
mode and the effective velocity is given as

ρp = ρn[1]dr, veff =
[w]dr

[1]dr
, (17)

and the normal mode hydrodynamic equation is

r∂tρn + (veff − q1)∂xρn = 0, (18)

It is convenient to denote the average over DOS as
〈f〉p =

∫
f(w)ρp(w)dw. In this notation, the conserved

quantities are given as the integral identities 〈r〉p = 1
and

〈
rwk

〉
p

= Ik. We are interested in the correlation
function of the conserved quantities,

Cαβ = [C]αβ =
〈
r(wα − Iα[1]dr)(wβ − Iβ [1]dr)

〉
p
.

(19)
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2.1 Thermal states

For thermal states, the ρn is the solution of the ther-
modynamic Bethe ansatz (TBA) like equation charac-
terized by the chemical potential μ, a function of the
external pressure and temperature determined at equi-
librium by condition

∫
n(w)dw = P ,

V (w) − 2(Tρn)(w) + log(ρn(w)) − μ = 0, (20)

where V (w) = 1
2βw2 for the initial state in Gibbs equi-

librium. Note that for a classical system, there is no
TBA, but this equation is obtained in Toda chain in
a similar spirit using a nontrivial mapping to random
matrix theory with the kernel given by K(x) = log(x),
which is determined from the two-particle scattering.
The solution to this highly non-linear root equation
is often supplemented with solving the correspond-
ing Fokker–Planck equation whose steady-state solu-
tion satisfies the TBA equation above,

∂tρ(w, t) = ∂w

(

V ′(w)ρ(w, t) − 2P

∫

K ′(w − v)

ρ(v, t)ρ(w, t)dv) + ∂2
wρ(w, t), (21)

where K ′ denotes the derivative of the integral ker-
nel K which is specific to the model. As a consis-
tency check, the solution to Eq. (21) is inserted into
the TBA Eq. (20), gives the chemical potential μ. At
equilibrium, μ turns out to be exactly the free energy
when we set w → 0 which acts as a cross-check for
the results with the explicit formula available [27]. At
this point, it is convenient to introduce the quasi-energy
parameterization of the normal mode obtained from
the solution of the Fokker–Planck solution of TBA by
ε(w) = − log[ρn(w)]. Numerically, this step is carried
out by first obtaining ε from the Fokker–Planck equa-
tion and then plugging it into the TBA Eq. (20) and
finding the roots of the equation. The average momen-
tum in terms of dressed variable is

〈p〉β,P = 〈r〉β,P

∫

ρn[w]drdw. (22)

The correlations in Eq. (19) in case of momentum cor-
relation are conjectured as (Eq. 3.17 in [16]),

Cpp ≈ 〈r〉β,P

∫
dwρp(w)δ(x − tveff (w)〈r〉−1

β,P )([v]dr)2(w).

(23)

Other higher order correlations can be computed appro-
priately by generalizing this formula.

3 Toda chain

We now focus on applying the methods described on
the Toda chain [28] which is a model of classical parti-
cles with exponentially decaying nearest-neighbor inter-
actions. This is an example of a classical interacting
integrable particle system [4] which is solvable by Lax
pairs as described before. A large Toda lattice is used
as a discrete model for solitonic waves while a small
chain of three particles can be mapped to the famous
Hennon–Heiles problem. The history of understanding
dynamics in Toda lattice is decades old: The equilib-
rium dynamical properties in large Toda chains were
extensively studied using various methods. Numerically,
correlations have been explored in the literature in [21]
using molecular dynamics simulations. In an integrable
system of N particles, an equivalent number of con-
served quantities is enough to describe the dynamics
completely. However, some recent results challenge this
assumption [23].

The Toda chain is defined as H(pi, ri) =
∑

i ei =
∑

i
p2

i

2 + e−ri with ri = qi+1 − qi. The equations of
motion (e.o.m.) are:

ṙi =pi+1 − pi,

ṗi =e−ri−1 − e−ri . (24)

These e.o.m. along with periodic boundary conditions
rN+1 = r1 and r0 = rN can be cast to a Lax matrix as
in Eq. (1), with λ = 0 and L = L+ = L−. The symmet-
ric matrix L is a tri-diagonal matrix with diagonal ele-
ments bi = pi

2 and off-diagonal elements ai = 1
2e−ri/2.

The conserved quantities are trace of the powers of
Lax matrix, denoted as Qn where Q1 =

∑N
i=1 pi and

Q2 =
∑N

i=1 ei. In [29], explicit higher order conserved
quantities are remunerated. Importantly, in real space,
the conserved quantities have increasing non-local sup-
port in space (see Fig. 1). However, this is not the
only way to view the conserved quantities of the sys-
tem; for example, the eigenvalues of the Lax matrix
are also conserved under evolution. It has been sug-
gested that the spacing between the eigenvalues of the
Lax matrix provides a natural transition to normal-
mode frequencies in [30, 31]. These conserved quanti-
ties are an adiabatic invariant for small non-integrable
perturbations [32]. Prior attempts have been made to
understand the dynamics of the Toda chain. The inverse
scattering method is useful in an isolated system and
provides a way to address not only the solitonic prop-
erties but also the large-scale hydrodynamic proper-
ties, as discussed earlier. Thermalization properties and
the conundrum of the local observable are related to
Gibbs or general Gibbs as addressed in [33]. The major-
ity of the works address single-point functions and
finite temperature dynamical spatio-temporal proper-
ties, although difficult to access, has been attempted
through non-interacting soliton gas analogy [34] and
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through quantum-classical correspondence with quan-
tum Toda chain [35]. Earlier attempts at dynamic prop-
erties of the Toda chain are reviewed in [36]. After a gap
in interest in Toda dynamics, recent development in the
integrable hydrodynamic theory of Toda chain in [1, 17],
where the dynamics of single-point functions starting
from domain wall initial conditions was addressed [26].
Accurate numerical results for the dynamics of two-
point functions were discussed in [21] and analytical
results were only available in the limiting cases when
the model was solvable. This work fills the gap in the-
oretical description of the numerical results in spatio-
temporal correlation functions described in [21] from
the theory developed in [16, 17].

3.1 Results

Figure 2 summarizes the main numerical results of com-
puting the momentum spatio-temporal correlations at
Gibbs thermal equilibrium. The system described by
Eq. (24) is solved together with the initial conditions
at equilibrium described by temperature (β−1 = T )
and pressure (P) in a Gibbs ensemble with Z =∏

i e−β(ei+Pri). The noisy grey line is a microscopic
numerical simulation of the macroscopic number of
N = 2048 particles with Toda interaction with an aver-
age of 107 initial conditions sampled from the Gibbs
distribution with T = 1, P = 1. The black dashed line
is obtained by numerically solving the GHD equation
in Eq. (23) with the input from the TBA equation for
computing the effective velocity of the quasi-particle
and analytically computed thermal expectation values.
Exact numerical details of the relevant computation are
given in [26], and a code is available at [37]. The cir-
cle and the stars are data from numerically solving the
Euler-scale hydrodynamic equation at Gibbs equilib-
rium as in Eq. (11) for small system sizes with N = 8
and N = 16. As anticipated earlier in the introduction,
surprisingly, even for the small system sizes, the spatio-
temporal correlations have a good agreement with cor-
relations in a large system sizes. This is indeed a sur-
prising observation, and it make us wonder about the
question of taking a thermodynamic limit, which serves
as the motivation of the problem. Note that the posi-
tions for each of the dots corresponding to solving the
Euler-scale equation can be interpreted as “generalized”
velocities of the system in the ballistic scaling limit.
When the dimensions of the Lax matrix are of order
N , there are N + 1 velocities, which overlaps with the
thermodynamic solution of the GHD. It is interesting to
note that these generalized velocities are neither sym-
metrical nor are they equally spaced. The peak of the
curves for momentum correlation is not captured well
with this method possibly due to the effects of taking of
even–odd number of particles, for energy correlations,
the peaks are explicitly the eigenvalues of the matrix A.
The relative density of state of the distribution of the
Lax eigenvalues is shown in Fig. 3, which shows that
the eigenvalues are closer to the edges and more spread
out in the bulk.

3.2 Numerical method for direct Euler-scale
dynamics

The numerical method used to simulate the hydrody-
namics of the Euler scale is by Monte Carlo sampling
of the Lax matrix. The trick here is to do the Monte
Carlo sampling from the Lax matrix itself correspond-
ing to the Gibbs ensemble of the system at a specific
temperature and pressure. For the Toda system, it can
be shown that in Gibbs distribution: i.e., when the sys-
tem is prepared in P ({pi, ri}) = Z−1e−β(H({pi,ri})+Pri)

(Z is the normalization), the elements ai follow the
Chi-square distribution (Fig. 4 for numerical sampling),
Pa(x) = 2(4β)βP

Γ(βP ) x2βP−1e−4βx2
, and the momentum fol-

low the Gaussian distribution. The eigenspectrum of
the Lax matrix is used to compute the Euler-scale
hydrodynamics along with the equilibrium correlations
of conserved quantities. In our simulations, we used a
109 sample of the Lax matrix and checked the conver-
gence of the eigenvalues of the matrix A. The equilib-
rium correlations of the conserved quantities are more
difficult objects to deal with analytically. As we men-
tioned before, the higher order conserved quantities
have increasing non-local support in real space, and the
convergence of equilibrium correlations becomes diffi-
cult. However, here we are interested in the system at
Gibbs equilibrium, where the relevant conserved quanti-
ties that enter the distribution are energy and stretch,
which are both extremely local in space. This makes
the connected correlation of the higher order conserved
quantities negligible compared to the correlations of
energy and the stretch variables. Interestingly, trun-
cating the Lax matrix to include only the first three
conserved quantities which appear in the Gibbs ensem-
ble: the energy, momentum, and the stretch repro-
duce to 5% error on the motion of the peaks of the
dynamical fluctuations [21] with the non-zero eigenval-
ues λ = ±0.8833 and we conclude that the correlations
of the higher non-local conserved quantities are impor-
tant to capture the dynamical correlations of the more
local conserved quantities.

3.3 Comparison and discussion and limitations
of results

We reiterate that these results are strictly for correla-
tions in the ballistic scaling limit. There are some intu-
itive results on the nature of diffusive corrections on
the ballistic scale, which we will not discuss here [17].
Although the method seems general, it is by no means
more efficient numerically than solving the GHD equa-
tions directly. The GHD framework provides a general
analytic framework for working with set generic initial
conditions. On the other hand, the Euler-scale hydro-
dynamics is a more brute-force approach to the problem
using Monte Carlo sampling of the initial data and is
limited to small system sizes.
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4 Conclusion

We have discussed the adequacy of using integrable
hydrodynamics to describe small classical (and quan-
tum) systems. We show that although the hydrody-
namic theory is developed for a large number of parti-
cles in thermodynamic limit, practically, using an inde-
pendent direct method discussed here, a relatively small
system size in a classical interacting integrable system
is already quite accurate in describing the results in
thermodynamic limit. We have tested this for a short-
ranged interacting system; however, questions related
to the finite-size hydrodynamics in a long-ranged sys-
tem (for example in Colegaro Sutherland model) remain
to be explored.
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Appendix

Density of states The relative density of states of the
finite-dimensional Lax matrix for Toda used to calcu-
late the correlation function is shown in Fig. 3.

Monte Carlo simulation of the Lax matrix

Fig. 3 The denisty of states 1/(λi+1 − λi) of the distri-
bution of sorted eigenvalues of the Lax matrix for the Toda
lattice in Gibbs equilibrium at temperature T = 1 and pres-
sure P = 1. The sampling of the Lax matrix at equilibrium
is achieved through transformation of the probability distri-
bution. The diagonal elements of the Lax matrix are Gaus-
sian to sample while the off-diagonal elements is shown in
Fig. 4

Fig. 4 Monte carlo sampling of the distribution of the off-
diagonal elements of Lax matrix as given by Equation III.
We use this to compute the Lax matrix’s eigenvalues and
the correlation functions
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Numerical values in matrix A The matrix A for N =
16 with β = P = 1 truncated to 4 × 4 matrix:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−0.0002 − 0.9993 0.0017 − 0.007 . . .
−0.3357 0.0021 0.4819 − 0.0114
0.0002 − 0.2333 − 0 1.2495
−0.234 0.0038 − 0.0556 − 0.0313

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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