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Abstract We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional
XXZ spin chain initially prepared in a domain wall state |1o) = |... TT]] ...). In absence of interactions,
we review the exact lattice calculation of several conserved quantities, including e.g. the magnetization and
the spin current profiles. At large distances z and times ¢, we show how these quantities allow for a ballistic
scaling behavior in terms of the scaling variable { = x /¢, with exactly computable scaling functions. In such
a limit of large space-time scales, we show that the asymptotic behavior of the system is suitably captured
by the local occupation function of spinless fermionic modes, whose semi-classical evolution in phase space
is given by a Euler hydrodynamic equation. Similarly, analytical results for the asymptotic fronts dynamics
are obtained for the interacting chain via Generalized Hydrodynamics. In the last part of the work, we
include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background in the
form of a conformal field theory that lives along the evolving Fermi contour. With this procedure, dubbed
quantum generalized hydrodynamics, it is possible to obtain exact asymptotic results for the entanglement

spreading during the melting dynamics.

1 Introduction

In the last 2 decades or so, the study of transport phe-
nomena in one-dimensional quantum systems is expe-
riencing renewed interest due to the recently devel-
oped theoretical and experimental technologies. Spe-
cial attention has been dedicated to one-dimensional
integrable systems, where unusual transport properties
emerge due to the presence of an infinite set of con-
served charges. In particular, such conservation laws are
responsible for a lack of thermalization of the system
at large times and, consequently, for the emergence of
current-carrying steady states, denoted as generalized
Gibbs ensembles (GGE) [1].

However, in the absence of translational invariance,
the study of these transport properties becomes much
more complicated as conventional integrability-based
techniques are generically lost. In order to investigate
transport phenomena in those systems with a non-
flat density profile (resulting, for instance, from the
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presence of confining potentials), an Euler hydrody-
namic theory for integrable models has been devel-
oped in recent years. This approach, dubbed General-
ized Hydrodynamics (GHD) [2, 3] (see also Refs. [4-7]
for reviews), allowed us to obtain asymptotically exact
results in quantitative agreement with numerical sim-
ulations (e.g. [2, 3, 8-17]) and experimental data [18,
19]. GHD has been initially developed for models fea-
turing an elementary Bethe ansatz, such as bosons with
contact interactions [20] and spin chains [21], and later
extended over the last years to include multi-component
models [22-27], diffusive corrections [28-31], atom
losses [32], and even weak integrability-breaking terms
[33-35]. Recent developments have enabled the further
study of intrinsically quantum properties such as zero-
temperature entanglement and equal-time correlation
functions, thanks to the requantization of GHD by
means of a non-standard Luttinger liquid theory [17,
36-43].

This success was made possible by pioneering studies
conducted on so-called bi-partite settings, where two
semi-infinite one-dimensional integrable models pre-
pared in GGE states are attached together and let
to unitarily evolve. At ¢t > 0, transport phenomena
emerges from the junction of the two chains, which acts
as a source of stable quasiparticles whose propagation

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-023-00845-1&domain=pdf
http://orcid.org/0000-0001-7638-8804
mailto:sscopa@sissa.it
mailto:dragi.karevski@univ-lorraine.fr

1764

give rise to non-vanishing currents throughout the sys-
tem. Notice that these bi-partite quench protocols are
placed midway between homogeneous quench problems
and genuinely inhomogeneous systems, and hence con-
stitute an ideal playground to develop and test new
approaches to quantum transport. One of the simplest
realizations of bi-partite quench protocol is the domain
wall (DW) configuration of a spin chain, namely a state
o) = |T ... Tl ... |) realized by joining together
two ferromagnets of opposite magnetization. Despite its
simplicity, the time evolution of such a state shows non-
trivial features of non-equilibrium dynamics and, for
this reason, it has been the main character of a large
number of studies, including stability analysis [44-46],
exact computations for the free case e.g. [25, 47—66],
approximate and numerical results for the interacting
integrable e.g. [67-80] and non-integrable e.g.[81-86]
chain.

The scope of this short review is to provide a con-
cise (and yet comprehensive) discussion of the physics
of the DW melting by revisiting early results and
modern GHD approaches to the problem, thus giv-
ing a handbook of the main available results and of
their derivation. The paper is organized as follows. In
Sect. 2, we introduce the model, the quench protocol,
and the quantities that we wish to characterize during
the dynamics. The contents are organized in two main
sections: (i) Sect. 3 dedicated to the study of the profiles
of conserved charges and currents by means of exact lat-
tice calculations and hydrodynamics; (ii) Sect. 4, where
we employ a requantization of the hydrodynamic the-
ory for the study of entanglement. In both sections, the
study of the non-interacting case is treated separately
for a better exposition. In Sect. 5, we give a short sum-
mary and some concluding remarks.

2 The domain wall melting problem
We consider the one-dimensional XXZ7 model with
Hamiltonian

N/2—1

AX AX AV AY A7 A7
Y (6365 + 6757, + Ade7 )
j=—N/241

H=-=

(1)

where N is the number of lattice sites (which we assume
to be even for future convenience), 7%, a = xyz,
denotes the standard Pauli operators acting on site
j and A is the anisotropy parameter. The hopping
amplitude J defines the overall energy scale and will
be set to unity from hereafter. We shall focus on the
gapless regime of the system |A|< 1, with the usual
parametrization A = cos~y. We do not consider the case
|A]> 1, because it can be shown with energy arguments
that initial domain wall configurations do not melt, see
Refs. [87, 88]. The case |A|= 1 is very peculiar [89,
90] and, therefore, it will be also excluded in this short
review.
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At t = 0, we prepare the system in the product state

o) = Q1) QI (2)

7<0 §>0

where |T;) (resp. |l;)) is the eigenstate of 6% with eigen-
value +1 (resp. —1), see Fig. 1 for an illustration. For
t > 0 we consider the Hamiltonian dynamics generated

by (1)

[e) = e [y (3)

during which the initial DW state (2) gradually melts.
During this process, we wish to characterize the trans-
port properties of the system. To this end, we will inves-
tigate the non-equilibrium dynamics of the profiles of
conserved charges and currents of the integrable model.
For the sake of concreteness, we will highlight the main
features related to the melting dynamics by considering
the magnetization profile

n(6) = 5 (4]0, @

and the spin current

) 1 Ay Ax Ax A
gn' (8) = 3 (rl0% G011 = Onom gl (5)

The latter can be deduced from the fact that the total
magnetization is conserved by the unitary dynamics
and, therefore, a local magnetization current can be
defined using a lattice continuity equation. This extends
to any conserved quantity and associated current in the
model, which are all obtainable with simple hydrody-
namic arguments as reviewed in the next section.

In the last part of this short review, we shall focus
on the entanglement spreading. In particular, we will
characterize the entanglement of a bipartition of the
one-dimensional chain as AUB = [-N/2+ 1,j]U[j +
1, N/2], for which the reduced density matrix is obtained
as

pa(t) = trp|te) (¢l (6)
and, from it, the Rényi entropies are defined as

1
- b

SE(t) = 7= logltr[(pa ()" (7)

with index p € N. The entanglement entropy is then
obtained in the limit p — 1 and reads as

Salt) = lim S () = ~txpa(t)log pa(t).  (8)
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(0|67 |1bo)

lattice site

Fig. 1 Setup of the domain wall melting problem. At ¢ = 0
the spin chain is prepared in the product state (2), corre-
sponding to a step-like profile of magnetization between the
values £1/2. For ¢ > 0, this configuration is let to unitarily
evolve with Hamiltonian (1)

3 Transport properties during the DW
melting

As discussed below, the physics of the DW melting is
qualitatively similar in the whole region |A|< 1. How-
ever, we find convenient to discuss the non-interacting
case A = 0 separately since, in this case, the system
reduces to a set of free fermions and the transport
properties can be determined with exact lattice calcu-
lations. From this, an emergent hydrodynamic picture
can be rigorously determined. In the interacting case
instead, the characterization of the transport during the
DW melting is possible only by means of GHD and it
requires the review of the Bethe ansatz solution of the
interacting model.

3.1 Non-interacting case

For A = 0, the Hamiltonian (1) reduces to the XX
model. The latter can be mapped to a system of spin-
less non-interacting fermions with tight-binding Hamil-
tonian

N/2—1
o=t 3 (@305 030
j=—N/2+41
N/2—1
=7 2 @ntaely),
j= e (9)

up to a boundary term which is negligible when N —
00, as considered below. Here, é;, ¢; stand for the cre-
ation and annihilation operators of a lattice spinless
fermion at site j and they satisfy canonical anticom-

mutation relations {é/,¢;} = & ;. The two forms of
the Hamiltonian (9) are related through Jordan-Wigner
transformation [91, 92]

At ; stoa—| st A
¢; = exp |im E 6, 6; IE ¢;
i<j
=exp |—im E 0,0, | 05,
i<j (10)
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where 6% are the ladder combination of Pauli operators

~t

65 = (67 £1i67)/2. In Fourier space, the model (9) is

readily diagonalized
N
Hy = — Z cos(k‘q)b;bq + cst (11)
q=1

in terms of the operators

N/2
b:; = Z Xq,j é;r_’ bg
j=—N/2+1
= (l;:f])T’ {627 Bq’} = 6(1,(1/ (12)

with  single-particle  wavefunction x4 ; =
V2N ~1sin(kyj) and quantized momenta k, = mq/N,
qgq=1,...,N.

Taking the limit N — oo, it is possible to replace
the quantized momentum £, with a continuous variable
k € [—m,w] and use the single-particle wavefunctions

Xk,j = exp(ikj)/VN.

3.1.1 Lattice description of the dynamics

From the exact solution of the non-interacting spin
chain (11), one can determine the time evolution of the

operators bL in Heisenberg picture as

bl (t) = exp[—it cos(k)] bl (0) (13)

and obtain, via inverse Fourier transform, the time evo-
lution of the lattice fermionic operators as

ehe) =D 1" Talt) €0, (14)

JEL

my(t)

n/N

Fig. 2 Magnetization profiles as function of the lattice site
7, plotted at different times. The symbols show the numer-
ical data, obtained from the exact diagonalization of the
lattice Hamiltonian with N sites and by a further Trotter
evolution of the initial two-point function, see e.g. Refs. [39,
40] for details. The full lines show the exact result of Eq. (15)

@ Springer



1766

where 7, (z) are Bessel functions of the first kind. From
this observation, the expectation value of lattice oper-
ators can be obtained by elementary calculations. For
instance, the magnetization profile is given by

ma(t) = (tolo7,(¢)|¢0)
= 3 T (O () ol 002, 0) ) —

jler
(15)

The initial domain wall state (2) forces j = [ in the
previous double sum leading to [47, 53, 57, 61, 93]

1 1=
i<—n j=—n+1

(16)

where the last expression is obtained using the prop-
erties J_j(2) = (=1)*Ti(2) and >, ., J2(2) = 1. In
Fig. 2, we compare the exact result in Eq. (15) with
numerical calculations for the finite lattice model, find-
ing an excellent agreement.

In general, given the non-interacting nature of the
problem, one can determine exact results for the trans-
port properties during the DW melting from the knowl-
edge of the two-point function

G (t) = (o], (t)ém (1) t00)
= (*i)nim Z Ts+n (t)~7s+m (t)a

= (17)

which can be simplified, thanks to the summation the-
orem [94] for Bessel functions, to [47, 53, 57, 61, 93]

Gn,m@) = (_i)n_m[jn(t)jm(t)
+ m(jn(t)jmﬂ(t)

= Tn+1(8) T (1))]- (18)

For instance, the magnetization profile in Eq. (15) is
recovered from the diagonal of G, ,, as

() = —5 + Gan() (19)

and the spin current can be obtained as

1

JrJLM(t) = E[Gn,wrl(t) - Gn+1,n(t)]- (20)

Similar results for other quantities can be worked out
following the same lines.
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3.1.2 Scaling limit of fronts

In the limit n — oo, t — oo at fixed ratio ¢ = n/t, the
magnetization profile admits a scaling form

M (t) ~ ®(n/t) (21)

with a scaling function ®(¢) that can be analytically
determined from Eq. (15) using the asymptotic expan-
sion of J,(n/¢) when n — oco. From this calculation,
one obtains

1, i <1
®(¢) = ¢ —Larcsin(¢), if —-1<¢<1; (22)
0, if ¢>1

Eq. (22) highlights the presence of a non-equilibrium
steady state (NESS) for this quench protocol, charac-
terized by a non-homogeneous profile of magnetization.
Since 67 is a conserved quantity for the spin chain (1),
it follows that the NESS is characterized by the pres-
ence of a non-vanishing spin current 52 (¢) that can be
determined from the continuity equation

atmn(t) +V, ]71:/[ (t) =0 (23)

where V,, is a discrete derivative defined on the lattice.
Using Eq. (22) in (23), one finds the scaling form for
the NESS spin current

LV1-¢, if —1<(<

0, otherwise.

g’ (t) ~E(0) = {
(24)

The same result is obtained from Eq. (20) by taking the
asymptotic behavior of the Bessel functions.

3.1.3 Emergent hydrodynamic description

In the limit N — oo and for a translationally invariant
Fermi gas, the occupation function of fermionic modes
can be obtained from the Fourier transform of the two-
point correlation function in real space

ni = (bpbe) = > e (el e), (25)
nez

where the site j is arbitrary because of translational
invariance. Given the non-interacting nature of the
problem, ny is expected to fully characterize the prop-
erties of the fermionic gas. In order to investigate the
DW melting problem then, one can consider j = (t and
take the limit ¢ — oo before performing the summation
over the index n [47]. In this way, the local properties of
the fermionic gas are characterized by the steady-state
value of a region which is shifted from the orgin of an
amount (t. Using the expression (18) for the two-point
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function, and taking the asymptotic expansion of the
Bessel functions, one arrives at the expression

i sm[arccos(Q)n]

tlir&<1/}0|ézt+n( )ect(t)|o) =
1 m—arcsin(¢)

= — dp e’
2w P

arcsin(¢)

(26)
and after a Fourier transform, it finally leads to [47]

1 7—arcsin(()

=i/) = — d i(p—k)n
/t) 27 arcsin(¢) b 7;2 ‘
1 m—arcsin(¢)
=— dp 6(k — p).
27 arcsin(() (27)

We argue that this exact asymptotic result for the occu-
pation function ny(¢) allows for an intuitive hydrody-
namic interpretation. Indeed, consider again the tight-
binding fermionic Hamiltonian (9). The continuum
limit is then attained by dividing the chain into a set
of equally spaced interval of size Ax = Ma, where a is
the lattice spacing and M > 1 is the number of sites
in each interval Az. By taking the scaling limit where
a, Az — 0 at fixed Ax/a = M, the lattice site j € Z
is replaced by the continuous variable z = aj € R, and
the Hamiltonian (9) is written as [39, 95]

Az
Hocx / / an{ 2(A1+y%+y a+hc)
(2%)

with continuous fermionic operators &}, = é}a =¢j,Cp =

(¢t)t. Furthermore, around each coarse-grained point,
the system is assumed to be in an eigenstate of a system
in a periodic box of size Ax. Therefore, the Hamiltonian
(28) can be diagonalized in Fourier space as

Hy / dz / — cos(

where now the local excitations in x are created by IA)L i
defined through

AT+ :/ﬂ—% 1k:yb;[€
acy 77‘_27‘_ T

At this point, one can define the local fermionic occu-
pation function for the DW initial state as

(B)bL obr,  (29)

(0f,.)T = brar (30)

Az )
dy ikz N .
nk(x):/o Az Lmdzek <1/)0\ci+y+z/zcz+yfz/2|1/10>.
(31)
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For free fermionic systems, one can notice from Eq. (31)
that the local occupation function of fermionic modes
corresponds to the Wigner function of the system. In
the hydrodynamic limit that we are considering, the
Wigner function takes only positive values ng(z) € [0,1]
and it carries the physical interpretation of probability
of finding a particle of momentum in a coarse-grained
position (z, k) of the phase space. It is then easy to see
that the macrostate corresponding to the initial state
(2) is given by

1, if 2<0and —7w <k <,
ng(z) = . (32)
0, otherwise.

The form of Eq. (32) for the hydrodynamic descrip-
tion of the DW state is self-evident as it fills the L.h.s.
of the system with modes —m < k < m, leaving the
right part empty. Due to the non-interacting nature of
the particles, each mode of momentum £, initially at
position xg, evolves ballistically with constant velocity
v(k) = sin k according to the equation of motion

x: = xo + v(k)t. (33)

It follows that the time-evolved fermionic occupation
function takes the form

ng(z,t) = ng(r — v(k)t,0). (34)

The latter can be also interpreted as the solution of the
following Euler equation

(O + v(k)z)nk(z,t) = 0, (35)

which is satisfied by the Wigner function at lowest order
in 9, and Jy, derivatives. A careful derivation of Eq. (35)
can be found in Refs. [96, 97]. We illustrate this hydro-
dynamic evolution in Fig. 3.

Moreover, since our initial state (32) has zero entropy
and since the Euler equation (35) is known to preserve
the entropy of a given initial state at any time dur-
ing the time evolution, the solution for ng(z,t) can
be reconstructed by following the time evolution of its
contour. For intuitive reasons, the latter is typically
referred to as Fermi contour I'; and it contains the infor-
mation about the local Fermi points kf of the model
at any space-time position (z, t) [17, 40]:

ry= U[k;(]:?t)vk;(x’t)] (36)

x

By noticing that the Fermi contour in the initial state

is given by those partlcle hv1ng at the interface at © =

O the expression for k& 7(x,t) is easily obtained from
q. (33) as

kE(x,t) = {m — arcsin(#/t); arcsin(z/t)}, if |#/¢< 1.

(37)
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particle evoling along
Ty =z +tsink

ng =1
ne =20
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light cone region

(AR

U e Ny

=1

ne =10

Fig. 3 Hydrodynamic description of the DW melting problem for the non-interacting spin chain. Left — The initial state
(2) can be described in terms of the local fermionic occupation function (32), here illustrated in the position-momentum
plane, i.e., in the phase-space of the free Fermi gas. Right — At times ¢ > 0, the evolution of the occupation function is
obtained from the equation of motion of each non-interacting mode and it displays a non-trivial phase-space configuration
in the region |z|< t (light cone region), where the correlations during the DW melting process are spread from the junction,

see main text

Using this, one can write the time-evolved fermionic
occupation function as

Lif k() <k <KAQ);

. )
0, otherwise

(38)

ng(x,t)=ni (¢ = ﬂf/t):{

hence recovering the result in Eq. (27) via hydrody-
namic arguments. From Eq. (38), one can obtain the
asymptotic behavior of conserved charges and associ-
ated currents straightforwardly. Indeed, given a local
conserved charge Q of the model (9), the expectation
value of the charge density is given as the integral sum
over the available modes at space-time position (z, t)

. ™ dk kO qf
Y8

k
— k; (C) 27‘(
(39)
weighted with the single-particle eigenvalue h,(gg) asso-

ciated with Q. Similarly, the associated current is
obtained as

k£ gk
. Q
0= [ o) 1 (40)
kp(¢) 2T
For instance, by setting h,(cg) héM) = 1 one can

recover the fermionic density n,(t) = m.(t) + 1/2 and
the associated current in Egs. (22)—(24). Notice that
using Eq. (39)—(40), the conservation law for each con-
served quantity

Qe 4a(t) + 00 G2 (1) =0 (41)
follows directly from the evolution of the filling function
in Eq. (35). In Fig. 4, we compare the asymptotic results

for the profiles of m,(t) and jM (t) with exact numerical
calculations for a spin chain of N = 600 sites, finding

@ Springer

an excellent agreement and a perfect data collapse in
the scaling variable ¢ = =/t.

Before turning to the analysis of the interacting spin
chain, we wish to conclude this paragraph with a final
remark. From both analytical and numerical calcula-
tions, we clearly observe a dependence of the asymp-
totic fronts on the scaling variable ¢ = =/t, rather
than on z and ¢ separately. This feature is related to
the Euler hydrodynamic description of the DW melt-
ing problem, and for integrable models, it gives rise to
ballistic transport. Along a ray of fixed (, the system
keeps its steady-state configuration during the whole
time evolution. For { — 400 (corresponding to either
|z|]— oo or t — 0), one inevitably moves outside the cor-
related region and hence recovers the initial DW con-
figuration of the spin chain. Indeed, in our problem,
the modes that are responsible for the non-equilibrium
dynamics are originated at the junction x = 0 and
spread throughout the left and right part of the spin
chain with a finite velocity, bounded by the maximum
value maxy[v(k)] = 1. Therefore, the system develops
a non-trivial profile in the so-called light cone region
—t < x < t, which is determined by the equation of
motion of the fastest excitations k = +7/2, while it
keeps its original configuration in those space-time posi-
tions where the propagating modes have not arrived
yet. In general, a light-cone effect is expected whenever
a maximal velocity of propagation exists (e.g. due to
the Lieb-Robinson bound [98]). We show this by plot-
ting the profile of magnetization (22) in a (z, t) plane,
see Fig. 5.

3.2 Interacting case

We now turn to the analysis of transport during the
DW melting of the interacting spin chain (1), which we
re-write for convenience

N/2—1

>

j=—N/241

2 AX AX AV AY A7 AT
H=-7 (656741 + 670741 + A6767,4).

(42)
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e : : : : : : ; : :
04l ) o (.2 ] 0.3F asymptotic : o
9 0.4 ! 0
0.2 a 5 L}
= & gg = 0 &
= 00 R g
g =
—0.2F asymptotic 0.1F
—04Ff N =600 i
. . . - ! ! 0.0 i X . ; ;
—0.4 —-0.2 0.0 0.2 0.4 —-04 —0.2 0.0 0.2 0.4
z/N /N
0.4 P 1 Ik e 1
o 0.4
0.2 1
- 061 _ oo} o ]
T 00 80841 =7 LN = 0 0.2
g =5
—0.2 asymptotic 0.1 ¢ 04 asymptotic A1
0.6
_oal N =600 s 08 N =600
. . . L L . L 0.0 . - . L L A .
—-1.00 —-0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00 -1.00 —-0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
x/t z/t

Fig. 4 Asymptotic behavior of the charges and current profiles during the DW melting for the non-interacting spin chain.
Top panels — Asymptotic magnetization (left) and spin current (right) profiles as function of the rescaled position z/N,
for different values of time. The symbols show the numerical data obtained for a chain of N > 1 via exact diagonalization
and subsequent Trotter evolution of the two-point function (see also the caption of Fig. 2). The full lines show the scaling
function in Eq. (22) (resp. Eq. (24)) for the magnetization (resp. the spin current). Bottom panels — Same plots as function
of ¢ = #/+. The data collapse at different times signals the presence of ballistic transport in our quench setting

m(()

light cone region 05

xT

Fig. 5 The DW melting problem in the z-t plane. The ini-
tial junction at x = 0 acts as a source of propagating par-
ticles, leading to the gradual melting of the initial ordered
chain inside the light cone region —t < x < t. Outside the
correlated region, the system keeps its initial DW configura-
tion. Each ray of constant ¢ = #/t corresponds to a specific
NESS for the dynamics (as shown in the figure by the uni-
form coloring of rays inside the light cone). We illustrate
this feature by plotting the magnetization profile (22) as a
color plot

As anticipated, we are interested in the regime |A|< 1,
where it is customary to write A = cos(y). We fur-
ther focus on the rational case, i.e., on those values
of v that can be written as ratio v = 7Q/P with @,
P two-coprime integers 1 < @ < P. In this case, the
interaction v admits a continued fraction representation

(43)

where {v1,...,v,} is a set of numbers satisfying
Viy...,Vq—1 = 1 and vy > 2. In the limit N — oo,
the model (42) is exactly solved by means of Ther-
modynamic Bethe Ansatz (TBA), see e.g. Refs. [99,
100]. In particular, for large N and according to the
string hypothesis [99], the excitation spectrum of the
spin chain is described by different species of quasipar-
ticles, generically referred as strings. The total num-
ber § of strings species is determined by the interaction
parameter v through [8, 17]

(44)

6= i V.
i=1

As we will see in the following paragraphs, the asymp-
totic physics of the DW melting in the interacting
case is found to be qualitatively similar to the non-
interacting one.

3.2.1 Thermodynamic Bethe ansatz solution

In the following, we provide a short summary of the
TBA solution of the model (42) tailored for the intro-
duction of the objects which are needed for the DW
melting problem discussed below. The interested reader
can find a comprehensive treatment e.g. in Refs. [99,
100].

In the presence of interaction A # 0, the diagonaliza-
tion of the spin chain (42) can be performed via Bethe
ansatz. In particular, in the Hilbert space sector with
M spins up and assuming periodic boundary condition
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for the spin chain, one can write down the exact eigen-
states of the model in terms of some complex parame-
ters {\; }Jj\il (usually called rapidities), which general-
ize the concept of particle momenta of a free Fermi gas
to the interacting case. The rapidities A; are obtained
through the solution of non-linear algebraic equations
implementing non-trivial quantization condition for the
interacting model, see e.g. Refs. [8, 17, 99].

As mentioned above, for sufficiently large N, the
rapidities of the model are arranged in symmetric pat-
terns around the real axis called strings S;

SJ:A;“+%FJ., j=1,...,0. (45)

Each string specifies a quasiparticle species in the
model. The parameter A\ € R is called string cen-
ter and the index a = 1,...,¢; identifies a specific
quasiparticle belonging to the string S;. The number
{; determines the total number of quasiparticles of a
given species. The quantities £; and Fj; can be deter-
mined using Bethe ansatz. Their precise expressions can
be read in e.g. Refs. [8, 17, 99].

In the limit N — oo, the spectrum of the model
becomes densely populated and the state of the system
can be suitably described in terms of a spectral distri-
bution of quasiparticles

p(j)<)\) = lim p(j)()\?) -

N—oo

a+1 —1
[NIATT = A7,
(46)

lim
N—oco

determined by the string center only. The spectral func-
tion pU)(\) can be obtained directly from the solution
of the integral equation

sp ) = 4,0 =Y

/ AN T = N) pD V),

5
1 o0

(47)
where s; = +1 is called string sign and a;(z), Tj(x)
are interaction kernels, see e.g. Refs. [8, 17, 99] for their
expressions. The knowledge of pl)(\) fully character-
ize the thermodynamic properties of the zero-entropic
states of the spin chain (42). For later purposes, we
introduce also the occupation function for zero-entropic
states as

: (48)
0, otherwise.

. 1 if pU)(N) # 0;

’I’L(j)()\):{ 9 1 P ()7é )

For more generic states having a non-zero entropy

(e.g. a thermal state), one has to introduce a density

distribution for the unoccupied rapidities (or holes)

pﬁlj ) (M) and complement the Bethe ansatz solution with

additional thermodynamic arguments that relate the
functions p)(\) and pg])()\).
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3.2.2 Generalized hydrodynamics

In the presence of an inhomogeneity (such as the kink
state (2)), the Bethe ansatz solution of the model
(42) breaks down due to the absence of translational
invariance. Nevertheless, by considering a hydrody-
namic limit for the interacting spin chain similar to
Sect. 3.1.3, one can describe the asymptotic properties
of the model as a collection of periodic boxes of size Az,
each containing a large number of lattice sites. In this
way, the local properties of the initial non-homogeneous
state can be determined in terms of a local occupation

function néj )(x, A), obtained from the TBA solution of
the model within the cell Az. The large-scale dynamics

of the occupation function is then established by the
GHD [2, 3]

(0 + v (t, 2, \) 0,)nt (, A) = 0. (49)

This set of equations has the same structure of Eq. (35)
for the non-interacting model, but it is characterized
by an effective velocity vgf) dressed by the interac-
tions, which depends self-consistently on the macrostate

n (z, \). A formal solution of the GHD equations (49)
is obtained with the method of characteristics, yielding

1 (2, X) = ng (&, \) (50)

where
t .
i=a —/ dt’ v (' Fp, N). (51)
0

We mention also Ref. [101], where a geometric approach
for the solution of GHD equations has been derived.
In general, the solution of Eq. (49) is obtained by a
numerical implementation. However, in the specific case
of non-homogeneous initial macrostates that are locally
described by a fully-polarized spin configuration (as it is
the DW initial state under analysis), the Bethe ansatz
solution of the model greatly simplifies and analytical
solution of the GHD can be determined.

3.2.3 Occupation function and effective velocity of fully
polarized states

As anticipated, in the specific case where the local prop-
erties of the spin chain in the cell Ax are described by
the ensemble

62h(m) ZieAm 5’:

T [0 Siean 7]

o(x) (52)

where h(z) is an external magnetic field, the local
macrostates nU)(z, \) can be analytically determined,
see Refs. [8, 17, 99]. The expressions for nU)(z, \) are
not very instructive and, therefore, are not reported
here. The important information that they reveal is
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that the occupation functions of strings j =1,...,6—2
are exponentially suppressed by the magnetic field,
while the strings 6 — 1, are not. In the limit of strong
magnetic field where

li o(x) =|...
h(ac)linioo Q(%) |

Mar...l or LD

(53)

depending on the sign of h(z), the expression for
nW) (X, z) dramatically simplifies and reads as

) (g, \) = 4 391 T 030
’ 0, otherwise

if h(z) > 0;

b

(54)

signaling that only the two largest strings j = d — 1,9
are responsible for the thermodynamic properties of the
fully-polarized cell Ax. It is then easy to see that the
DW initial state for the interacting chain is described
by the occupation functions

if =<0;

- 551+ 30,
néj)(x,A)Z{ #0100 (55)

0, otherwise.

From Eq. (49), one can notice that the GHD evolution
of the state (55) is also determined by the sole behav-
ior of the strings j = § — 1,4. Furthermore, a careful
inspection of the TBA equation of the model for fully
polarized states reveals that

oo =08 = vs(\) = Cosin(ks(V)  (56)

and the time-evolved occupation function

1 D (@, ) = 0l (2, A) = 0l (x — vs (A, N),
n§j<6_1)(f£, )\) =0. (57)

We refer to Refs. [8, 17, 38] for details on the derivation
of these results. In Eq. (56), we introduced

Co = sin(y)/ sin(w/P) (58)
and the quantity
ks(A) = ssps(A), (59)

which, up to the string sign ss, is equal to the bare
physical momentum ps(\) of the string, see e.g. Refs. [8,
17, 38] for details.

Equations (56)—(57) allow for the derivation of ana-
lytical results for the transport properties of the inter-
acting chain (1) during the DW melting, as discussed
in the next paragraph.
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3.2.4 Analytical results

As already noticed for the non-interacting case, the
solution (57) for the time-evolved occupation function is
redundant due to the zero-entropy condition preserved
by the GHD equations (49) at any time during the
melting dynamics. Therefore, in analogy with the non-
interacting case, we define a local Fermi contour T';(A)
generalizing Eq. (36) as [17]

Li(A) = Mg (e, 1), Af(z, 0)] (60)

x

with Fermi rapidities )\f at space-time position (z, t)
obtained by the solution of the equation of motion

z —tvs(Ar) =z — (ot sin(ks(Ar)) = zo. (61)

By noticing that the function ks(\) is monotone in the
interval [—7/P,7/P] [8, 17, 38], one can solve Eq. (61)
with zg = 0 as

ks(A\p) = arcsin(z/¢ot), if |z/t|<sin(y). (62)
The other root ks(\}.) comes from a Fermi rapidity

/\; — o0 initially located at x¢ < 0, corresponding to
the momentum

ks(\}) =/ P. (63)

Similarly, one can show that the other string, say § — 1,
is related to Fermi points

ks_1(\F) = {7 — arcsin(#/¢ot), m — 7/P}.  (64)

Both strings j = 6,6 — 1 contribute with equal weight
ls—1 = L5 = P/2 and, for P = 2, they properly repro-
duce the situation in absence of interactions [38]. Notice
that the structure of the Fermi contour I'; is very sim-
ilar to that of the non-interacting spin chain, although
the presence of interactions lead to a shrinking of the
light cone region from —1 < =/t <1 at A =0 to [8, 17,
38]

light cone region : ¢ ==/t € [-V/1— A2 /14 AZ2].
(65)

The charge profiles during the DW melting process
follow straightforwardly. In particular, the profile of
magnetization for |¢|< 1 — A? is obtained as the
weighted integral sum over the available quasiparticles
as [8, 17]

)

1  dA , o
mt(x)=—§+ PRz o K5 (A) ng (2, A)
j=o-1 ’-
1 P ks(AF)
=——+ dks(X)

2021 Jis0)
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Fig. 6 Asymptotic profiles of magnetization (left panels) and of spin current (right panels) as function of the ratio ¢ = /¢,
plotted for different values of interactions. From top to bottom: v = 37/7, 7/3 /4 corresponding to the anisotropy parameter
A = 0.222,0.5,0.707. The symbols show the numerical data obtained with tensor network simulations for a spin chain of
N = 150 sites, while the full lines show the analytical GHD prediction in Eqgs. (66)—(67). The agreement of the curves is
seen extremely good, especially at large times where the convergence toward the GHD is improving. We do observe some
small finite-size effects at the edges of the light cones that can be minimized by considering larger spin chains. Though,
this task is found non-trivial due to the increasing of entanglement during the dynamics, which significantly slow down
tensor network-based simulations, see next section. Finally, we notice that the light cone region shrinks by increasing the
interaction (from top to bottom panels), see Eq. (65). In each panel, we marked the light cone positions by a dashed vertical
axes

and it vanishes outside the light cone. One can notice
that for @ = 1 and P = 2 corresponding to A = 0, the
results in Eqgs. (22)—(24) are recovered. In Fig. 6, we
show the comparison of the analytical GHD prediction
in Egs. (66)—(67) against tensor network numerical sim-
ulations for the interacting spin chain, performed with
the open-source libray iTensor [105]. The agreement of
the curves with the numerical data is extremely good.

—% arcsin(¢/¢o). (66)

Outside the light cone ¢ > +1—A2? (resp. ( <
—v1 — AZ), the system keeps its initial value of mag-
netization m = —1/2 (resp. m = 1/2). Similarly, the
spin current profile for |¢|< v/1 — A? is obtained as [8,
17] (see also Ref. [102-104] for a rigorous derivation of
(67) in spin chain models)

4 Quantum description and entanglement
5 dynamics

y Ty LG (4)
M@= 3 4 [ P E) @) @)

The goal of this section is to complement the discussion

on the transport properties of the DW melting with a

+
= ki /ké()\F) dks(Nwvs(N) study on entanglement. As we shall review in the follow-
2m ks(A7) ing paragraphs, an ab initio characterization of entan-
CoP - glement with exact lattice calculations is very demand-
=5 (\/ 1-¢/¢2— COS(?T/P)) (67)  ing also in absence of interaction, the case A = 0, due
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to the inhomogeneous and non-equilibrium character of
the problem. In addition, even the hydrodynamic evo-
lution established by the local occupation function in
Egs. (35)—(49) is not sufficient for the study of quan-
tum correlations among different cells, hence of entan-
glement. The reason of this failure is rooted in the
assumption that underlies the hydrodynamic limit con-
sidered so far. In particular, in deriving the hydrody-
namic picture, we assumed that each cell is described
by a local density matrix of the form of a GGE, i.e.,
0c(r) oc exp[—)_,; Bi(x,t)Q;] in terms of some local
Lagrange multipliers (;(x,t) associated with each con-
served quantity, see e.g. Refs. [3, 5] for more details.
However, by doing this, long-range quantum coher-
ent effects among different coarse-grained points are
washed out, resulting in the vanishing of equal-time
correlation functions and of zero-temperature entangle-
ment.

Nevertheless, a possibility to restore these missing
quantum effects is given by the novel framework of
Quantum Generalized Hydrodynamics (QGHD) [17,
36-41, 43]. According to this theory, the relevant pro-
cesses at low energies are in the form of particle-hole
excitations generated near the local Fermi points and
can be described by a non-standard Luttinger liquid liv-
ing along the evolving Fermi contour. In the following,
we briefly revisit the QGHD framework and detail the
solution for the DW melting problem. For the sake of
clarity, we shall treat first the case A = 0 and afterward
extend the discussion on entanglement to the interact-
ing spin chain.

4.1 Case: A =0

In absence of interactions, it is well known that the
entanglement properties of the lattice model (9) can
be related to the spectrum of the two-point correlation
function (18), see Ref. [106-111] for a discussion. In
particular, given a bipartition of the spin chain as AU
B =[-N/2+41,j]U[j + 1,N/2], one has the expression
for the Rényi entropies

N/a—1—j

— log[AP + (1 — A)P
Sa =15 ; og[A7 +(1—A)P]  (68)

and for the entanglement entropy

N/2—1—j

Sa=— Y [MlogA+(1—Ap)log(1l—Ay)].
- (69)

Here, A; are the eigenvalues of the two-point correlation
function (18) restricted to the subsystem A, i.e., G4 =
[Grm]n mea. However, such a direct approach is very
demanding and often not possible in inhomogeneous
quench settings as the one that we are considering. In
some special cases, some results have been obtained fol-
lowing this strategy (see e.g. Refs. [112-116]) but these
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are based on non-trivial lattice calculations and, there-
fore, will not be discussed in this context.

4.1.1 Re-quantization of the Fermi contour

In this short review, we rather proceed by considering a
re-quantization of the Euler hydrodynamics of Sect. 3
including linear quantum fluctuations at the edges of
the local Fermi points as

kp(x,t) — kp(x,t) + 0k(z). (70)

and define the excess density simply as dn(xz) =
6ky(z)/m. Using standard bosonization arguments
[117-119], one can then relate the fluctuating field
0n¢(x) to the vertex operators of an effective field the-
ory arising at large scales and at low energies. To this
end, we express 07 (x) as

Siia() :% (@), (71)

where g{)t(:ﬁ) is a height field encoding the long-range
density fluctuations along the one-dimensional spin
chain, see e.g. Ref. [120-123]. From Eq. (70), one can
obtain the leading order term of the Haldane harmonic-
fluid expansion for the time-dependent lattice fermions
as [36, 39, 43|

et () ~ C(x, t)e 1@, el (@) :+h.o.c. 72
2 (t) (z,t) (72)

with dimensionful non-universal amplitude C(z, t) and
semi-classical phase o(z,t) that are unimportant for
our scopes, see e.g. Refs. [36, 55, 121, 123] for a discus-
sion. Here, : -: denotes the normal ordering of fields and
ét(x) is a phase-fluctuating field satisfying

0a). b)) = Ssgna — o). (1)

Higher order terms are obtained from vertices with
higher scaling dimension but their contribution is neg-
ligible in the low-energy regime. It is then customary to
express the fields ¢;(x) and 6, (z) in terms of two chiral

bosons ¢(+) [118]

)= — L 3P+ 3O @) (e
b(@) = =SB @ 87 @) b

_ VEKi(2) (-

= Y= 0 " @) - 47 @), (74)

describing left- and right-moving propagating sound
waves along the Fermi contour. The parameter K;(z)
is usually called Luttinger parameter and is related to
the local compressibility of the off-equilibrium quantum
fluid. In absence of interactions,

free fermionic limit:
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irrespective on the space-time position. At this point,
by plugging the expansion (74) in (9) and retaining
only quadratic terms, one arrives to the Luttinger liquid
Hamiltonian

}{LL = — j/(ix Ut

where the sound velocity v;(x) = sinkp(z,t). In terms
of the chiral fields,

)| (@:bu(2))* + (2.1 (2))?]

(76)

Hyp = %/dx [Sin k;(x,t)(ax&“[*])(m))?

+ sin k;(w,t)(axéga[i})(x)f (77)

with a[4] = a(kE(z,t)) and a(k) = F if sign(k) <
0. Finally, from the expression (76) for the Luttinger
liquid Hamiltonian, one obtains the action [38, 55, 56,
121-123]

d d d A
s J/ v ;t](t LT a0, u(x)Opr(z)  (78)

where the indices a,b = x,t and we restored the depen-
dence on K;(x) =1 for future convenience. The action
in Eq. (78) describes a free massless compact boson
with space-time dependent coupling K;(z) and time-
dependent non-flat 2-dimensional metric tensor ggup,
whose line element reads as

ds? = [vy(x) dt — da]*. (79)

It is easy to show that this metric can be mapped to a
flat one with a simple change of coordinates where dz +—
dz = dx/vi(z), see e.g. Ref. [38, 39, 55, 56, 121-123]
for details. Hence, the action (78) displays conformal
invariance in those settings where K;(x) = const, as it
is the case for a non-interacting spin chain (cf. Eq. (75)).
In the following, we shall make use of tools stemming
from conformal field theory (CFT) to establish the uni-
versal behavior of the entanglement entropy during the
DW melting problem.

4.1.2 Universal behavior of entanglement

The universal behavior of Rényi entropy for a biparti-
tion AU B = [—00, zg] U (29, +00] with cutting point
in a real-space position xg can be established using the
known relation [124-126]

) 1 ;
S = 7 loelirlpel) =

—log(T, (a0).
(80)

1

obtained from the path-integral representation of the
operator [p,|P on a p-sheeted Riemann surface. Here,
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’j't(p)(xo) is a boundary field known as twist field con-
necting local operators among the p-copies of the model
across the branch-cut at zo, see e.g. Refs. [125, 126] for
a discussion. Crucially, in our model, the twist field is a
primary operator of the CFT along the Fermi contour
with scaling dimension

1
4y = 250 =) (51)
and it allows for a chiral decomposition
7 (00) = 7" (w0, 1) @ 7" (20, -)  (82)

in terms of the chiral components Tt(p) (z9,x), each
with scaling dimension d,/2. Notice that these objects
are highly non-trivial if compared to their equilibrium
counterparts, due to their time dependence and to the
non-homogeneous background over which expectation
values are evaluated. However, a natural description for
these boundary fields is attained by moving from space-
time coordinates (z, t) to a coordinate s = s(x, t) along
the Fermi contour T'; at time ¢. By doing this, Eq. (80)
becomes

ds | /2

dz

ds dp /2

F GO CRIE

(83)

~ 1
S,ﬁf’)):i log
1- 1% S=s4

where si are the boundary points of the subsytem A
along T';, see the discussion below. Notice that in terms
of the coordinate s, sound waves can be described by
a unique component circulating along the contour, see
e.g. Refs. [39, 43]. The expectation value in the last
equation is then obtained by standard boundary CFT
and reads as

_dp

(7P (s1)7 P (s (84)

The coordinate s(z, t) is an isothermal coordinate
for the space-time-dependent metric (79). Its explicit
expression is generically out-of-reach, excluding out-
standing cases such as Ref. [36] and Refs. [56]. For
generic interacting problems, one typically finds an
isothermal coordinate s(z, 0) for the initial inhomo-
geneous configuration as done in Refs. [120-123] and
evolves the initial correlations in time according to the
equation derived in Ref. [37]. For free systems, the
isothermal coordinate s(z, 0) is a comoving coordinate
since quantum fluctuations in the initial state do not
evolve and are only transported along the contour I'y
during the dynamics, see Refs. [17, 39-41, 55] for exam-
ples.

The DW melting problem falls in the simplest cate-
gory. An isothermal coordinate for this quench is simply
given by [55, 56]

s(z,t) =

kr(¢) = arcsin(¢), —-1<¢<1. (8)
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Fig. 7 Illustration of the QGHD framework for the DW melting problem. Left — At ¢ = 0, we include linear quantum
fluctuations §7(x) on top of the initial Fermi contour at z = 0 and we map momentum-space correlations into a CFT that
lives along a unit circle of length 27. Right — At ¢ > 0, through the ballistic propagation of particles from the junction,
the system develops real-space entanglement for any bipartition with cutting point xo inside the light cone. The amount of
entanglement in real space is then established by the local Fermi points at (z, t) (green circles) and simply translates into
the entanglement of the interval [s_, s;] for the CFT along the Fermi contour, thanks to the non-interacting nature of the

problem

It follows that the boundary points s4 for a real-space
cut at position zg are given by

sy = {m — arcsin(#o/t); arcsin(zo/t)} (86)

and, by elementary algebra, one obtains directly from
Eq. (84) the result [55]

Zo

- 1
S — % log[2t|1 — =o/|]. (87)

Despite its simplicity, Eq. (85) allows for a non-trivial
interpretation that we wish to comment. In fact, the
change of coordinates (z,t) — s = kp(¢) imple-
ments a mapping between real-space correlations and
momentum-space correlations of the spin chain during
the melting dynamics. At ¢ = 0, we prepare our sys-
tem in a product state, i.e., with exact zero entangle-
ment for any cutting position zy. However, the same
does not hold true if one considers the entanglement
of a bipartition in momentum space, for which stan-
dard boundary CFT can be applied. During the time
evolution, momentum-space entanglement is gradually
transported to real-space through the ballistic propaga-
tion of particles, resulting in the logarithmic growth of
Eq. (87). In this sense, the isothermal coordinate s(z, t)
may be viewed as a bridge between real and momen-
tum space, and therefore, it establishes the amount of
spatial correlations that are generated via propagation
at a given space-time point (x,t). We illustrate this
procedure in Fig. 7.

4.1.3 Short distance regularization and asymptotic
results

At this point, we recall that Eq. (87) provides only the
universal contribution to the Rényi entropies and it has
to be complemented with a non-universal regularization
at short distances [55]. The latter, for homogeneous
equilibrium models, typically introduces an additive

constant and therefore is often neglected or estimated
as fitting parameter. Though, in out-of-equilibrium and
non-homogeneous situations, its effect is more pro-
nounced and significantly modify the space-time depen-
dence of Rényi entropies in Eq. (87). Hence, by dimen-
sional analysis, we can write the regularized Rényi
entropy as

1 N
Sk = T-p log((ex, ()™ TP (1))

_gw _P*tl
S op logle, (t)] (88)

where €, (t) is a local UV cutoff. On physical grounds,
one expects that the short-distance regularization is set
by the microscopic scale of the model within the cell ),
which is the inverse local density, and reads as

€ (1) o< (/2 + may (£)) . (89)

From exact Fisher-Hartwig calculations made for the
microscopic XX model [127, 128], one can refine the
ansatz in Eq. (89) and obtains the correct value of cutoff
as [17, 39-41, 43, 55]

c

cos(mmy, (t))’ (90)

Exq (t) =

with C a known non-universal amplitude, see
Refs. [127, 128] for its expression. Using Eq. (90) in
Eq. (88), after simple algebra one obtains the final
result

1
Si = % log[t(1 — #b/i*)*/*] + rp,  (91)
where the additive constant k, = —(P+1)/12plog[C/2],

for instance k1 = 0.4785 [128]. By setting zop = 0 and
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p = 1in Eq. (91), we see that the half-system entan-
glement entropy displays a logarithmic growth in time
as [17, 40, 55]

%m:%mgw+m. (92)

This results can be alternatively viewed as a mani-
festation of Calabrese-Cardy formula [124] (see also
Ref. [129] by Holzhey-Larsen-Wilczek), since the size
of the correlated region is growing linearly with time in
our problem.

In Fig. 8, we show the entanglement profiles (91)
and the half-system entanglement entropy (92) against
exact numerical data and we observe a perfect matching
of the curves with numerics.

42 Case: —1 < AK1

As anticipated, in generic interacting integrable mod-
els, the Luttinger parameter K;(z) is non-constant and
non-homogeneous and, therefore, the conformal invari-
ance of the action (78) is generically lost. Its value can
be determined (as at equilibrium) from the value of
the dressed magnetization evaluated at any of the local
Fermi rapidities A& (x, ) in Eq. (60), see Ref. [38] for a
discussion and e.g. Ref. [100] for details on the calcula-
tion.

However, the very peculiar features about the Bethe
ansatz of the DW state (cf. Refs. [8, 17, 99] and
Sect. 3.2.3) that led to the very outstanding possibility
of finding an analytical solution for the GHD equation
of the model (cf. Refs.[8, 17, 38] and Sect. 3.2.4), permit
the analytical calculation of the Luttinger parameter,
which for both the strings j = § — 1, equals to

K(z)=K="—. (93)

Remarkably, the Luttinger parameter for the DW melt-
ing problem is constant and depends only on the inter-
action parameter (actually only on the denominator,
recall that v = arccos(A) = 7Q/P), displaying a pecu-
liar fractal dependence [38].

Consequently, conformal invariance in Eq. (78) is not
broken even at finite interactions and one can obtain
the Rényi entropy of a bipartition with cutting point
xo employing the same techniques of Sect. 4.1. In par-
ticular, one can still write the relation

S(p)(A) =1 1

Zo

log(ea, (t, A) TP (1)) (94)

and, by scaling arguments, one obtains [38]

ptl

S(p)(A) — T

zo

log(t) + fo(*/cot) + Kp(A) (95)
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where f,(¢/Co) is a scaling function that has been con-
jectured in Ref. [38] and k,(A) is a non-universal addi-
tive constant that we are currently unable to analyti-
cally determine. From the numerical analysis of Fig. 9,
we observe that the qualitative behavior of the entan-
glement for the interacting chain |A|< 1 is not lim-
ited to the logarithmic half-system growth (cf. Eq. (95)
and (92)) but instead applies to the whole entanglement
profiles, modulo a rescaling by the interactions of the
light cone, as pointed out in Eq. (65).

5 Summary and concluding remarks

In this short review, we revisited the out-of-equilibrium
physics arising during the unitary evolution of a one-
dimensional spin chain prepared in a domain wall con-
figuration. For this problem, we focused on transport
properties (i.e., characterization of charge and current
profiles) and on the study of entanglement entropy.

In Sect. 3, the first aspect has been first addressed for
a noninteracting spin chain by exact lattice methods,
from which a hydrodynamic approach has been later
developed. We then extended such a hydrodynamic
approach to the interacting case by means of Bethe
ansatz techniques and through the use of generalized
hydrodynamics, both of which are briefly commented
on in the text. We derived exact results for charge and
current profiles and showed how these are found in per-
fect agreement with the numerical data, obtained by
exact methods or by the use of tensor network-based
numerical simulations.

In the second part of the review (Sect. 4), we revis-
ited the study of entanglement dynamics by means of
quantum generalized hydrodynamics, which consists of
the use of CFT tools arising from the requantization
of the hydrodynamic background through a Luttinger
liquid. Analytical results for Rényi entropy profiles at
different times have been derived and compared with
numerical data.

As commented in the introduction, the domain wall
melting problem has been the subject of numerous stud-
ies e.g. [17, 39-42, 47, 53, 55-57, 59, 61, 62, 71, 112,
113], from which numerous analytical results have been
collected over years. Besides being one of the very rare
cases of non-trivial systems where such solutions can
be derived, the study of this setting is also extremely
useful as basis for investigating the dynamics of other
quench problems with generic integrable models. Hence,
the purpose of this review is twofold: first, to concisely
provide a summary of available results for domain wall
melting, and second, to give an overview accessible to
a broad community of the hydrodynamic approach to
integrable systems via a thorough study of a prototyp-
ical model, which has recently attracted a great deal of
attention.
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Fig. 8 Left — Entanglement entropy for the DW melting of a non-interacting spin chain, plotted as function of the cutting
point z and for different times. Symbols show the numerical data obtained from Eq. (69) after the exact diagonalization of
G 4 while the full lines show the predictions by QGHD of Eq. (91). Right — Half-system entanglement growth during the
DW melting as function of time, plotted in semi-logarithmic scale
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Fig. 9 Entanglement profiles during the DW melting of the interacting spin chain, plotted at different times and for
different values of interaction (from left to right: v = 37/7,7/3,7/4 corresponding to A = 0.222,0.5,0.707). The data is
obtained with tensor network simulations. Dashed vertical axes mark the position of the light cone at each time, according

to Eq. (65)

Acknowledgements The authors would like to convey
their best wishes to their colleague and friend Malte
Henkel for his 60th birthday. SS acknowledges support
from ERC under Consolidator Grant No. 771536 (NEMO).
DK acknowledges support from the French ANR funding
UNIOPEN (Grant No. ANR-22-CE30-0004-01). SS is very
thankful to the LPCT of Nancy for the invitation to the
SPLDS22 conference where this work has been initiated.
The authors acknowledge J. Dubail, F. Ares, P. Ruggiero,
S. Wald, D. Horvéth, F. Rottoli, L. Capizzi and P. Calabrese
for useful discussions on QGHD and for collaborations on
closely related topics.

Funding Information Open access funding provided by
Scuola Internazionale Superiore di Studi Avanzati - SISSA
within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third
party material in this article are included in the arti-
cle’s Creative Commons licence, unless indicated other-
wise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and

your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Data Availability No data associated in the manuscript.

References

1. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relax-
ation in a completely integrable many-body quantum
system: An ab initio study of the dynamics of the
highly excited states of 1D lattice hard-core bosons.
Phys. Rev. Lett. 98, 050405 (2007)

2. B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Trans-
port in out-of-equilibrium XXZ chains: Exact profiles
of charges and currents. Phys. Rev. Lett. 117, 207201
(2016)

3. O.A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Emer-
gent hydrodynamics in integrable quantum systems out
of equilibrium. Phys. Rev. X 6, 041065 (2016)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1778

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V. Alba, B. Bertini, M. Fagotti, L. Piroli and P. Rug-
giero, Generalized-hydrodynamic approach to inho-
mogeneous quenches: correlations, entanglement and
quantum effects. J. Stat. Mech. 114004 (2021)

B. Doyon, Lecture notes on Generalised Hydrodynam-
ics. SciPost Phys. Lect. Notes 18 (2020)

F. H. L. Essler, A short introduction to generalized
hydrodynamics. Phys. A 2022, 127572

J. De Nardis, B. Doyon, M. Medenjak and M. Panfil,
Correlation functions and transport coefficients in gen-
eralised hydrodynamics J. Stat. Mech. (2022) 014002
M. Collura, A. De Luca, J. Viti, Analytic solution of the
Domain Wall non-equilibrium stationary state. Phys.
Rev. B 97, 081111 (2018)

A. De Luca, M. Collura, J. De Nardis, Nonequilibrium
spin transport in integrable spin chains: Persistent cur-
rents and emergence of magnetic domains. Phys. Rev.
B 96, 020403 (2017)

A. Bastianello, V. Alba, J.S. Caux, Generalized hydro-
dynamics with space—time inhomogeneous interactions.
Phys. Rev. Lett. 123, 130602 (2019)

V.B. Bulchandani, R. Vasseur, C. Karrasch, J.E.
Moore, Solvable hydrodynamics of quantum integrable
systems. Phys. Rev. Lett. 119, 220604 (2017)

V.B. Bulchandani, R. Vasseur, C. Karrasch, J.E.
Moore, Bethe-Boltzmann hydrodynamics and spin
transport in the XXZ chain. Phys. Rev. B 97, 045407
(2018)

B. Doyon, J. Dubail, R. Konik, T. Yoshimura, Large-
scale description of interacting one-dimensional bose
gases: generalized hydrodynamics supersedes conven-
tional hydrodynamics. Phys. Rev. Lett. 119, 195301
(2017)

B. Doyon, T. Yoshimura, J.S. Caux, Soliton gases
and generalized hydrodynamics. Phys. Rev. Lett. 120,
045301 (2018)

L. Piroli, J. De Nardis, M. Collura, B. Bertini, M.
Fagotti, Transport in out-of-equilibrium XXZ chains:
Nonballistic behavior and correlation functions. Phys.
Rev. B 96, 115124 (2017)

J.S. Caux, B. Doyon, J. Dubail, R. Konik, T.
Yoshimura, Hydrodynamics of the interacting bose gas
in the quantum newton cradle setup. SciPost Phys. 6,
070 (2019)

S. Scopa, P. Calabrese, J. Dubail, Exact hydrodynamic
solution of a double domain wall melting in the spin-
1/2 XXZ model. SciPost Phys. 12, 207 (2022)

M. Schemmer, I. Bouchoule, B. Doyon, J. Dubail, Gen-
eralized hydrodynamics on an atom chip. Phys. Rev.
Lett. 122, 090601 (2019)

N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol, D.S.
Weiss, Generalized hydrodynamics in strongly interact-
ing 1D Bose gases. Science 373, 6559 (2021)

1. Bouchoule, J. Dubail, Generalized hydrodynamics in
the one-dimensional Bose gas: theory and experiments.
J. Stat. Mech. 2, 14003 (2022)

B. Bertini, F. Heidrich-Meisner, C. Karrasch,
T. Prosen, R. Steinigeweg, M. Znidaric, Finite-
temperature transport in one-dimensional quantum
lattice models. Rev. Mod. Phys. 93, 025003 (2021)

@ Springer

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Eur. Phys. J. Spec. Top. (2023) 232:1763-1781

Y. Nozawa, H. Tsunetsugu, Generalized hydrodynamic
approach to charge and energy currents in the one-
dimensional Hubbard model. Phys. Rev. B 101, 035121
(2020)

Y. Nozawa, H. Tsunetsugu, Generalized hydrodynam-
ics study of the one-dimensional Hubbard model: Sta-
tionary clogging and proportionality of spin, charge,
and energy currents. Phys. Rev. B 103, 035130 (2021)
M. Mestyan, B. Bertini, L. Piroli, P. Calabrese, Spin-
charge separation effects in the low-temperature trans-
port of one-dimensional Fermi gases. Phys. Rev. B 99,
014305 (2019)

S. Scopa, P. Calabrese, L. Piroli, Real-time spin-charge
separation in one-dimensional Fermi gases from gen-
eralized hydrodynamics. Phys. Rev. B 104, 115423
(2021)

F. Mgller, C. Li, I. Mazets, H.-P. Stimming, T. Zhou, Z.
Zhu, X. Chen, J. Schmiedmayer, Extension of the gen-
eralized hydrodynamics to the dimensional crossover
regime. Phys. Rev. Lett. 126, 090602 (2021)

S. Scopa, P. Calabrese, L. Piroli, Generalized hydrody-
namics of the repulsive spin-1/2 Fermi gas. Phys. Rev.
B 106, 134314 (2022)

J. De Nardis, D. Bernard, B. Doyon, Hydrodynamic
diffusion in integrable systems. Phys. Rev. Lett. 121,
160603 (2018)

J. De Nardis, D. Bernard, B. Doyon, Diffusion in gener-
alized hydrodynamics and quasiparticle scattering. Sci-
Post Phys. 6, 049 (2019)

M. Medenjak, J. De Nardis, T. Yoshimura, Diffusion
from convection. SciPost Phys. 9, 075 (2020)

J. Durnin, A. De Luca, J. De Nardis, B. Doyon, Diffu-
sive hydrodynamics of inhomogenous Hamiltonians. J.
Phys. A: Math. Theor. 54, 494001 (2021)

1. Bouchoule, B. Doyon, J. Dubail, The effect of atom
losses on the distribution of rapidities in the one-
dimensional Bose gas. SciPost Phys. 9, 044 (2020)

J. Durnin, M.J. Bhaseen, B. Doyon, Nonequilibrium
dynamics and weakly broken integrability. Phys. Rev.
Lett. 127, 130601 (2020)

A. Bastianello, J. De Nardis, A. De Luca, General-
ized hydrodynamics with dephasing noise. Phys. Rev.
B 102, 161110 (2020)

A. Bastianello, A. De Luca and R. Vasseur, Hydrody-
namics of weak integrability breaking, J Stat. Mech.
(2021) 114003

P. Ruggiero, Y. Brun, J. Dubail, Conformal field theory
on top of a breathing one-dimensional gas of hard core
bosons. SciPost Phys. 6, 051 (2019)

P. Ruggiero, P. Calabrese, B. Doyon, J. Dubail, Quan-
tum generalized hydrodynamics. Phys. Rev. Lett. 124,
140603 (2020)

M. Collura, A. De Luca, P. Calabrese, J. Dubail,
Domain-wall melting in the spin-1/2 XXZ spin chain:
emergent Luttinger liquid with fractal quasi-particle
charge. Phys. Rev. B 102, 180409(R) (2020)

S. Scopa, A. Krajenbrink, P. Calabrese, J. Dubail,
Exact entanglement growth of a one-dimensional hard-
core quantum gas during a free expansion. J. Phys. A:
Math. Theor. 54, 404002 (2021)

F. Ares, S. Scopa, S. Wald, Entanglement dynamics of
a hard-core quantum gas during a Joule expansion. J.
Phys. A: Math. Theor. 55, 375301 (2022)



Eur. Phys. J. Spec. Top. (2023) 232:1763-1781

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

S. Scopa, D.X. Horvath, Exact hydrodynamic descrip-
tion of symmetry-resolved Rényi entropies after a
quantum quench. J. Stat. Mech. 2, 83104 (2022)

F. Rottoli, S. Scopa, P. Calabrese, Entanglement
Hamiltonian during a domain wall melting in the free
Fermi chain. J. Stat. Mech. 2, 63103 (2022)

P. Ruggiero, P. Calabrese, B. Doyon, J. Dubail,
Quantum generalized hydrodynamics of the Tonks-
Girardeau gas: density fluctuations and entanglement
entropy. J. Phys. A: Math. Theor. 55, 024003 (2022)
I.G. Gochev, Spin complexes in a bounded chain. JETP
26, 3 (1977)

I1.G. Gochev, Contribution to the theory of plane
domain walls in a ferromagnet. JETP 58, 115 (1983)
S. Yuan, H. De Raedt, S. Miyashita, Domain-wall
dynamics near a quantum critical point. Phys. Rev.
B 75, 184305 (2007)

T. Antal, Z. Récz, A. Rédkos, G.M. Schiitz, Transport
in the XX chain at zero temperature: Emergence of flat
magnetization profiles. Phys. Rev. E 59, 4912 (1999)
S. Tasaki, Non-equilibrium stationary states of non-
interacting electrons in a one-dimensional lattice.
Chaos, Solitons Fractals 12, 2657 (2001)

S. Tasaki, Nonequilibrium stationary states for a quan-
tum 1-d conductor. AIP Conf. Proc. 519, 356 (2000)
H. Araki, T.G. Ho, Asymptotic time evolution of a par-
titioned infinite two-sided isotropic XY- chain. Proc.
Steklov Inst. Math. 228, 203 (2000)

Y. Ogata, Non-equilibrium properties in the transverse
XX chain. Phys. Rev. E 66, 016135 (2002)

W.H. Aschbacher, C.-A. Pillet, Non-equilibrium steady
states of the XY chain. J. Stat. Phys. 112, 1153 (2003)
T. Antal, P.L. Krapivsky, A. Ra&kos, Logarithmic
current fluctuations in nonequilibrium quantum spin
chains. Phys. Rev. E 78, 061115 (2008)

B. Doyon, A. Lucas, K. Schalm, M.J. Bhaseen, Non-
equilibrium steady states in the Klein-Gordon theory.
J. Phys. A 48, 095002 (2015)

J. Dubail, J.-M. Stéphan, J. Viti, P. Calabrese, Con-
formal field theory for inhomogeneous one-dimensional
quantum systems: the example of non-interacting
Fermi gases. SciPost Phys. 2, 2 (2017)

N. Allegra, J. Dubail, J.-M. Stéphan, J. Viti, Inhomo-
geneous field theory inside the arctic circle. J. Stat.
Mech. 2, 53108 (2016)

D. Karevski, Scaling behaviour of the relaxation in
quantum chains. Eur. Phys. J. B 27, 147 (2002)

V. Hunyadi, Z. Racz, L. Sasvari, Dynamic scaling of
fronts in the quantum XX chain. Phys. Rev. E 69,
066103 (2004)

M. Rigol, A. Muramatsu, Emergence of quasiconden-
sates of hard-core bosons at finite momentum. Phys.
Rev. Lett. 93, 230404 (2004)

L. Vidmar, J.P. Ronzheimer, M. Schreiber, S. Braun,
S.S. Hodgman, S. Langer, F. Heidrich-Meisner, I.
Bloch, U. Schneider, Dynamical quasicondensation of
hard-core bosons at finite momenta. Phys. Rev. Lett.
115, 175301 (2015)

T. Platini, D. Karevski, Scaling and front dynamics in
Ising quantum chains. Eur. Phys. J. B 48, 225 (2005)
T. Platini, D. Karevski, Relaxation in the XX quantum
chain. J. Phys. A 40, 1711 (2007)

63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

1779

. A. De Luca, J. Viti, D. Bernard, B. Doyon, Nonequi-
librium thermal transport in the quantum Ising chain.
Phys. Rev. B 88, 1342301 (2013)

A. De Luca, G. Martelloni, J. Viti, Stationary states in
a free fermionic chain from the quench action method.
Phys. Rev. A 91, 021603 (2014)

J. Viti, J.-M. Stéphan, J. Dubail, M. Haque, Inhomoge-
neous quenches in a free fermionic chain: Exact results.
Europhys. Lett. 115, 40011 (2016)

V. Eisler, F. Maislinger, Hydrodynamical phase tran-
sition for domain-wall melting in the XY chain. Phys.
Rev. B 98, 161117(R) (2018)

D. Gobert, C. Kollath, U. Schollwock, G.M. Schiitz,
Real-time dynamics in spin—% chains with adaptive
time-dependent density matrix renormalization group.
Phys. Rev. E 71, 036102 (2005)

P. Calabrese, C. Hagendorf and P. Le Doussal, Time
evolution of 1D gapless models from a domain-wall ini-
tial state: stochastic Loewner evolution continued?, J.
Stat. Mech. (2008) P07013

V. Zauner, M. Ganahl, H. Evertz, T. Nishino, Time
evolution within a comoving window: scaling of sig-
nal fronts and magnetization plateaus after a local
quench in quantum spin chains. J. Phys. Cond. Matt.
27, 425602 (2012)

J. Halimeh, A. Wéllert, I. Mc Culloch, U. Schollwock,
T. Barthel, Domain-wall melting in ultracold-boson
systems with hole and spin-flip defects. Phys. Rev. A
89, 063603 (2014)

V. Alba, F. Heidrich-Meisner, Entanglement spreading
after a geometric quench in quantum spin chains. Phys.
Rev. B 90, 075144 (2014)

E. Vicari, Quantum dynamics and entanglement in
one-dimensional Fermi gases released from a trap.
Phys. Rev. A 85, 062324 (2012)

T. Sabetta, G. Misguich, Nonequilibrium steady states
in the quantum XXZ spin chain. Phys. Rev. B 88,
245114 (2013)

A. Biella, A. De Luca, J. Viti, D. Rossini, L. Mazza,
R. Fazio, Energy transport between two integrable spin
chains. Phys. Rev. B 93, 205121 (2016)

D. Bernard and B. Doyon, Conformal field theory out
of equilibrium: a review, J. Stat. Mech. (2016) 064005
L. Vidmar, D. Iyer, M. Rigol, Emergent eigenstate solu-
tion to quantum dynamics far from equilibrium. Phys.
Rev. X 7, 021012 (2017)

E. Langmann, J.L. Lebowitz, V. Mastropietro, P.
Moosavi, Steady states and universal conductance in
a quenched luttinger model. Comm. Math. Phys. 349,
551 (2017)

V. Alba, B. Bertini, M. Fagotti, Entanglement evolu-
tion and generalised hydrodynamics: interacting inte-
grable systems. SciPost Phys. 7, 005 (2019)

B. Bertini, M. Fagotti, L. Piroli, P. Calabrese, Entan-
glement evolution and generalised hydrodynamics:
noninteracting systems. J. Phys. A 51, 3901 (2018)
M. Mestyan, B. Bertini, L. Piroli, P. Calabrese, Spin-
charge separation effects in the low-temperature trans-
port of 1D Fermi gases. Phys. Rev. B 99, 014305 (2019)
S. Jesenko, M. Znidaric, Finite-temperature magne-
tization transport of the one-dimensional anisotropic
Heisenberg model. Phys. Rev. B 84, 174438 (2011)

@ Springer



1780

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

J. Hauschild, F. Heidrich-Meisner, F. Pollmann,
Domain-wall melting as a probe of many-body local-
ization. Phys. Rev. B 94, 161109(R) (2016)

C. Karrasch, R. llan, J.E. Moore, Nonequilibrium ther-
mal transport and its relation to linear response. Phys.
Rev. B 88, 195129 (2013)

T. Rakovszky, C. von Keyserlingk, F. Pollmann, Entan-
glement growth after inhomogenous quenches. Phys.
Rev. B 100, 125139 (2019)

A. Lerose, F.M. Surace, P.P. Mazza, G. Perfetto, M.
Collura, A. Gambassi, Quasilocalized dynamics from
confinement of quantum excitations. Phys. Rev. B 102,
041118(R) (2020)

M. Coppola, G. T. Landi, and D. Karevski, Wigner
dynamics for quantum gases under inhomogeneous gain
and loss processes with dephasing, preprint - arXiv:
2212.11029 (2022)

G. Misguich, K. Mallick, P.L. Krapivsky, Dynamics of
the spin-1/2 Heisenberg chain initialized in a domain-
wall state. Phys. Rev. B 96, 195151 (2017)

G. Misguich, N. Pavloff, V. Pasquier, Domain wall
problem in the quantum XXZ chain and semiclassical
behavior close to the isotropic point. SciPost Phys. 7,
025 (2019)

M. Ljubotina, M. Znidaric, T. Prosen, Spin diffusion
from an inhomogeneous quench in an integrable sys-
tem. Nat. Commun. 8, 16117 (2017)

E. Tlievski, J. De Nardis, M. Medenjak, T. Prosen,
Superdiffusion in one-dimensional quantum lattice
models. Phys. Rev. Lett. 121, 230602 (2018)
P. Jordan, E. Wigner, Uber das
Aquivalenzverbot. Z. Phys. 47, 631 (1928)
E.P. Wigner, On the quantum correction for thermody-
namic equilibrium (Springer-Verlag, Berlin, 1997)
G.M. Schiitz, S. Trimper, Relaxation and aging in
quantum spin systems. EPL 47, 164 (1999)

See e.g. I. S. Gradshteyn and I. M. Ryzhik, Table of
Integrals, Series, and Products (Academic Press, New
York, 1943), p.989

P. Wendenbaum, M. Collura, D. Karevski, Hydrody-
namic description of hard-core bosons on a Galileo
ramp. Phys. Rev. A 87, 023624 (2013)

M. Fagotti, Higher-order generalized hydrodynamics in
one dimension: The noninteracting test. Phys. Rev. B
96, 220302 (2017)

M. Fagotti, Locally quasi-stationary states in noninter-
acting spin chains. SciPost Phys. 8, 048 (2020)

E.H. Lieb, D.W. Robinson, The finite group velocity of
quantum spin systems. Commun. Math. Phys. 28, 251
(1972)

M. Takahashi, Thermodynamics of one-dimensional
solvable models (Cambridge University Press, Cam-
bridge, 2005)

V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quan-
tum Inverse Scattering Method and Correlation Func-
tions (Cambridge Univ Press, Cambridge, 1993)

B. Doyon, H. Spohn, T. Yoshimura, A geometric view-
point on generalized hydrodynamics. Nucl. Phys. B
926, 570 (2017)

B. Pozsgay, Algebraic construction of current operators
in integrable spin chains. Phys. Rev. Lett. 125, 070602
(2020)

Paulische

@ Springer

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Eur. Phys. J. Spec. Top. (2023) 232:1763-1781

M. Borsi, B. Pozsgay, L. Pristyak, Current operators in
bethe ansatz and generalized hydrodynamics: an exact
quantum-classical correspondence. Phys. Rev. X 10,
011054 (2020)

M. Borsi, B. Pozsgay and L. Pristyak, Current oper-
ators in integrable models: a review, J. Stat. Mech.
(2021) 094001

M. Fishman, S. R. White, E. M. Stoudenmire, The
iTensor Software Library for Tensor Network Calcula-
tions, preprint - arXiv: 2007.14822 (2020)

I. Peschel, Entanglement in solvable many-particle
models. Braz. J. Phys. 42, 267 (2012)

I. Peschel, M. Kaulke, 0. Legeza, Density-matrix spec-
tra for integrable models. Ann. Phys. 8, 153 (1999)
M.C. Chung, I. Peschel, Density-matrix spectra of solv-
able fermionic systems. Phys. Rev. B 64, 064412 (2001)
I. Peschel, Calculation of reduced density matrices from
correlation functions. J. Phys. A 36, L205 (2003)

I. Peschel, On the reduced density matrix for a chain
of free electrons, J. Stat. Mech. (2004) P06004

I. Peschel, V. Eisler, Reduced density matrices and
entanglement entropy in free lattice models. J. Phys.
A 42, 504003 (2009)

V. Eisler, D. Karevski, T. Platini and I. Peschel, Entan-
glement evolution after connecting finite to infinite
quantum chains, J. Stat. Mech. (2008) P0102

V. Eisler, I. Peschel, Surface and bulk entanglement in
free-fermion chains. J. Stat. Mech. 2, 4005 (2014)

V. Eisler, F. Maislinger, H.G. Evertz, Universal front
propagation in the quantum Ising chain with domain-
wall initial states. SciPost Phys. 1, 014 (2016)

V. Eisler, I. Peschel, Analytical results for the entan-
glement hamiltonian of a free-fermion chain. J. Phys.
A 50, 284003 (2017)

V. Eisler, Entanglement spreading after local and
extended excitations in a free-fermion chain, To be
published in J. Phys. A: Math. Theor. (2021)
T. Giamarchi,

M.A. Cazalilla, Bosonizing one-dimensional
atomic gases. J. Phys. B 37, 1 (2004)

M.A. Cagalilla, R. Citro, T. Giamarchi, E. Orignac, M.
Rigol, One dimensional bosons: From condensed mat-
ter systems to ultracold gases. Rev. Mod. Phys. 83,
1405 (2011)

Y. Brun, J. Dubail, One-particle density matrix of
trapped one-dimensional impenetrable bosons from
conformal invariance. SciPost Phys. 2, 012 (2017)

Y. Brun, J. Dubail, The Inhomogeneous Gaussian Free
Field, with application to ground state correlations of
trapped 1d Bose gases. SciPost Phys. 4, 037 (2018)

A. Bastianello, J. Dubail, J.-M. Stéphan, Entanglement
entropies of inhomogeneous Luttinger liquids. J. Phys.
A 53, 23 (2020)

S. Scopa, L. Piroli, P. Calabrese, One-particle density
matrix of a trapped Lieb Liniger anyonic gas. J. Stat.
Mech. 2, 93103 (2020)

P. Calabrese, J. Cardy, Entanglement entropy and
quantum field theory. J. Stat. Mech. 2, 6002 (2004)
J.L. Cardy, O.A. Castro-Alvaredo, B. Doyon, Form fac-
tors of branch-point twist fields in quantum integrable
models and entanglement entropy. J. Stat. Phys. 130,
129 (2008)

cold


http://arxiv.org/abs/2212.11029
http://arxiv.org/abs/2007.14822

Eur. Phys. J. Spec. Top. (2023) 232:1763-1781 1781

126. P. Calabrese, J. Cardy, Entanglement entropy and con- 128. B.Q. Jin, V.E. Korepin, Quantum spin chain, Toeplitz

formal field theory. J. Phys. A 42, 504005 (2009) determinants and the Fisher-Hartwig conjecture. J.
127. P. Calabrese, F.H.L. Essler, Universal corrections to Stat. Phys. 116, 79 (2004)

scaling for block entanglement in spin-1/2 XX chains. 129. C. Holzhey, F. Larsen, F. Wilczek, Geometric and

J. Stat. Mech. 2, 8029 (2010) renormalized entropy in conformal field theory. Nucl.

Phys. B 424, 443-467 (1994)

@ Springer



	Scaling of fronts and entanglement spreading during a domain wall melting
	1 Introduction
	2 The domain wall melting problem
	3 Transport properties during the DW melting
	3.1 Non-interacting case
	3.1.1 Lattice description of the dynamics
	3.1.2 Scaling limit of fronts
	3.1.3 Emergent hydrodynamic description

	3.2 Interacting case
	3.2.1 Thermodynamic Bethe ansatz solution
	3.2.2 Generalized hydrodynamics
	3.2.3 Occupation function and effective velocity of fully polarized states
	3.2.4 Analytical results


	4 Quantum description and entanglement dynamics
	4.1 Case: Δ=0
	4.1.1 Re-quantization of the Fermi contour
	4.1.2 Universal behavior of entanglement
	4.1.3 Short distance regularization and asymptotic results

	4.2 Case:  -1<Δ<1

	5 Summary and concluding remarks
	References
	References




