Skip to main content
Log in

Complex formation and microheterogeneity in water–alcohol binary mixtures investigated by solvatochromic study

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The water–alcohol binary mixtures have been extensively investigated by experimental and theoretical approaches, since they are extensively used in several industrial processes, being also very important in life sciences. Solvatochromism involves the use of spectrally active molecules (absorbing in the investigated spectral range) as probes introduced in a transparent solvent in small concentrations, so that the intermolecular interactions between its molecules can be neglected. The shift of the absorption spectral band of solute when dissolved is related to the intermolecular interactions between the solute’s molecules and the solvent molecules. Here, we report on the solvatochromic investigation of water–alcohol binary mixtures, based on experimentally measured absorption spectra. For the binary solvents, the composition of the first solvation shell (which have the most important contributions to the total shift of the solute’s spectral band) is different from that one existing in the whole solution. This happens, because the molecules of the active solvent (the one whose molecules stronger interact with the solute’s molecules) will be to a greater extent in the first solvation shell of the solute’s molecule. Three theoretical models were comparatively applied to estimate the composition of the first solvation shell of the solute’s molecule and thus to assess the solvatochromic data: statistical cell model of ternary solutions, Suppan model, and Bosch-Rosés model. Information on the water–alcohol complex formation (by hydrogen bonds) was obtained, as well as on the microheterogeneity of the binary mixture. The obtained data also allow the estimation of the interaction energy between two molecules in pairs solute–solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are available from the corresponding author on reasonable request.

References

  1. P.J. Sheskey, W.G. Cook, C.G. Cable (eds.), Handbook of pharmaceutical excipients, 8th edn. (Pharmaceutical Press, London, 2017)

    Google Scholar 

  2. A.O. Barel, M. Paye, H.I. Maibach, Handbook of cosmetic science and technology, 4th edn. (CRC Press, Taylor & Francis Group, Boca Raton, 2014)

    Book  Google Scholar 

  3. D. El Khaled, N. Novas, J.A. Gázquez, R.M. García, F. Manzano-Agugliaro, Alcohols and alcohol mixtures as liquid biofuels: a review of dielectric properties. Renew. Sust. Energ. Rev. 66, 556–571 (2016). https://doi.org/10.1016/j.rser.2016.08.032

    Article  Google Scholar 

  4. H. Hui (ed.), Handbook of plant-based fermented food and beverage technology, 2nd edn. (CRC Press, Taylor & Francis Group, Boca Raton, 2012)

    Google Scholar 

  5. Y. Chen, R. Ye, J. Liu, Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Ind. Crops Prod. 50, 764–770 (2013). https://doi.org/10.1016/j.indcrop.2013.08.023

    Article  Google Scholar 

  6. R. Hoogenboom, H.M.L. Thijs, D. Wouters, S. Hoeppener, U.S. Schubert, Tuning solution polymer properties by binary water–ethanol solvent mixtures. Soft Matter 4, 103–107 (2008). https://doi.org/10.1039/B712771E

    Article  ADS  Google Scholar 

  7. K.A. Kravanja, M. Finšgar, Ž. Knez, M. Knez-Marevci, Supercritical fluid technologies for the incorporation of synthetic and natural active compounds into materials for drug formulation and delivery. Pharmaceutics 14, 1670 (2022). https://doi.org/10.3390/pharmaceutics14081670

    Article  Google Scholar 

  8. A. Dzigbor, A. Chimphango, Evaluating the potential of using ethanol/water mixture as a refrigerant in adsorption cooling system by using activated carbon–sodium chloride composite adsorbent. Int. J. Refrig. 97, 132–142 (2019). https://doi.org/10.1016/j.ijrefrig.2018.09.025

    Article  Google Scholar 

  9. P.-Y. Hsu, C.-L. Sun, On the performance assessment of using alcohol/water mixtures in a solar Rankine cycle system with an evacuated tube collector. AIP Conf. Proc. 1984, 020005 (2018). https://doi.org/10.1063/1.5046589

    Article  Google Scholar 

  10. M. Fasano, L. Bergamasco, A. Lombardo, M. Zanini, E. Chiavazzo, P. Asinari, Water/ethanol and 13X zeolite pairs for long-term thermal energy storage at ambient pressure. Front. Energy Res. 7, 148 (2019). https://doi.org/10.3389/fenrg.2019.00148

    Article  Google Scholar 

  11. R.K. Lam, J.W. Smith, R.J. Saykally, Hydrogen bonding interactions in water–alcohol mixtures from X-ray absorption spectroscopy. J. Chem. Phys. 144, 191103 (2016). https://doi.org/10.1063/1.4951010

    Article  ADS  Google Scholar 

  12. H. Zao, Y. Tan, R. Zhang, Y. Zhao, C. Zhang, X.-C. Zhang, L. Zhang, Molecular dynamics investigation of ethanol–water mixture by terahertz-induced Kerr effect. Opt. Express 29, 36379–36388 (2021). https://doi.org/10.1364/OE.439954

    Article  ADS  Google Scholar 

  13. C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H. Eugene-Stanley, F. Mallamace, Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 K < T < 295 K. J. Phys. Chem. B 112, 10449–10454 (2008)

    Article  Google Scholar 

  14. A. Wakisaka, T. Ohki, Phase separation of water–alcohol binary mixtures induced by the microheterogeneity. Faraday Discuss. 129, 231–245 (2005). https://doi.org/10.1039/B405391E

    Article  ADS  Google Scholar 

  15. S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper, Molecular segregation observed in a concentrated alcohol-water solution. Nature 416, 829–832 (2002). https://doi.org/10.1038/416829a

    Article  ADS  Google Scholar 

  16. T. Sato, A. Chiba, R. Nozaki, Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis. J. Chem. Phys. 112, 2924–2932 (2000). https://doi.org/10.1063/1.480865

    Article  ADS  Google Scholar 

  17. G. Matisz, A.-M. Kelterer, W.M.F. Fabian, S. Kunsági-Máté, Structural properties of methanol–water binary mixtures within the quantum cluster equilibrium model. Phys. Chem. Chem. Phys. 17, 8467–8479 (2015). https://doi.org/10.1039/C4CP05836D

    Article  Google Scholar 

  18. T.A. Pascal, W.A. Goddard III., Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures. J. Phys. Chem. B 116, 13905–13912 (2012). https://doi.org/10.1021/jp309693d

    Article  Google Scholar 

  19. S.K. Allison, J.P. Fox, R. Hargreaves, S.P. Bates, Clustering and microimmiscibility in alcohol-water mixtures: evidence from molecular-dynamics simulations. Phys. Rev. B 71, 024201 (2005). https://doi.org/10.1103/PhysRevB.71.024201

    Article  ADS  Google Scholar 

  20. M.M. Dulcescu-Oprea, A.C. Morosanu, D.G. Dimitriu, A. Gritco-Todirascu, D.O. Dorohoi, C. Cheptea, Solvatochromic study of pyridinium-acetyl-benzoyl methylid (PABM) in ternary protic solutions. J. Mol. Struct. 1227, 129539 (2021). https://doi.org/10.1016/j.molstruc.2020.129539

    Article  Google Scholar 

  21. N.K. Karmakar, S. Pandey, R.K. Pandey, S.S. Shukla, Solvatochromism: a tool for solvent discretion for UV–vis spectroscopic studies. Appl. Spectrosc. Rev. 56, 513–529 (2021). https://doi.org/10.1080/05704928.2020.1838918

    Article  ADS  Google Scholar 

  22. D.O. Dorohoi, D.E. Creanga, D.G. Dimitriu, A.C. Morosanu, A. Gritco-Todirascu, G.G. Mariciuc, N. Puica-Melniciuc, E. Ardelean, C. Cheptea, Computational and spectral means, for characterizing the intermolecular interactions in solutions and for estimating excited state dipole moment of solute. Symmetry 12, 1299 (2020). https://doi.org/10.3390/sym12081299

    Article  ADS  Google Scholar 

  23. İ. Sıdır, Y.G. Sıdır, Solvatochromism and intramolecular hydrogen-bonding assisted dipole moment of phenyl 1-hydroxy-2-naphthoate in the ground and excited state. J. Mol. Liq. 221, 972–985 (2016). https://doi.org/10.1016/j.molliq.2016.06.019

    Article  Google Scholar 

  24. F. Naderi, A. Farajtabar, Solvatochromism of fluorescein in aqueous aprotic solvents. J. Mol. Liq. 221, 102–107 (2016). https://doi.org/10.1016/j.molliq.2016.05.071

    Article  Google Scholar 

  25. H.C. Boroujeni, F. Gharib, Solvatochromism and preferential solvation of deferiprone in some water-organic mixed solvents. J. Solution Chem. 45, 95–108 (2016). https://doi.org/10.1007/s10953-015-0425-y

    Article  Google Scholar 

  26. D. Babusca, A.C. Benchea, D.G. Dimitriu, D.O. Dorohoi, Solvatochromic characterization of Sudan derivatives in binary and ternary solution. Anal. Lett. 49, 2615–2626 (2016). https://doi.org/10.1080/00032719.2016.1152275

    Article  Google Scholar 

  27. C. Reichardt, Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994). https://doi.org/10.1021/cr00032a005

    Article  Google Scholar 

  28. G.S. Jas, E.C. Rentchler, A.M. Słowicka, J.R. Hermansen, C.K. Johnson, C. Russell Middaugh, K. Kuczera, Reorientation motion and preferential interactions of a peptide in denaturants and osmolyte. J. Phys. Chem. B 120, 3089–3099 (2016). https://doi.org/10.1021/acs.jpcb.6b00028

    Article  Google Scholar 

  29. T. Pradhan, P. Ghoshal, R. Biswas, Structural transition in alcohol-water binary mixtures: a spectroscopic study. J. Chem Sci. 120, 275–287 (2008). https://doi.org/10.1007/s12039-008-0033-0

    Article  Google Scholar 

  30. R. Biswas, B. Bagchi, Activated barrier crossing dynamics in slow, viscous liquids. J. Chem. Phys. 105, 7543–7549 (1996). https://doi.org/10.1063/1.472580

    Article  ADS  Google Scholar 

  31. Y.T. Mazurenko, Universalnie vzaimodeistvii v treh componentov jidkostiah (in Russian). Opt. Spektrosk. XXXIII, 1060–1064 (1972)

    Google Scholar 

  32. V. Pop, D.O. Dorohoi, M. Delibas, Considerations on the statistic model of the intermolecular interactions in ternary solutions. An. Stiint. Univ. Al. I. Cuza Iasi s.Ib 32, 79–84 (1986)

    Google Scholar 

  33. P. Suppan, Local polarity of solvent mixtures in the field of electronically excited molecules and exciplexes. J. Chem Soc. Faraday Trans. 1(83), 495–509 (1987). https://doi.org/10.1039/F19878300495

    Article  Google Scholar 

  34. E. Bosch, M. Rosés, Relationships between ET polarity and composition in binary solvent mixtures. J. Chem Soc. Faraday Trans. 88, 3541–3546 (1992). https://doi.org/10.1039/FT9928803541

    Article  Google Scholar 

  35. M.J. Kamlet, J.L.M. Abboud, R.W. Taft, An examination of linear solvation energy relationships, in Progress in physical organic chemistry, vol. 13, ed. by R.W. Taft (Wiley Interscience Publication, New York, 1981), pp.485–630

    Google Scholar 

  36. U. Buhvestov, F. Rived, C. Ràfols, E. Bosch, M. Rosés, Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 11, 185–192 (1998). https://doi.org/10.1002/(SICI)1099-1395(199803)11:3%3c185::AID-POC993%3e3.0.CO;2-5

    Article  Google Scholar 

  37. M.J. Kamlet, R.W. Taft, The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976). https://doi.org/10.1021/ja00418a009

    Article  Google Scholar 

  38. R.W. Taft, M.J. Kamlet, The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976). https://doi.org/10.1021/ja00426a036

    Article  Google Scholar 

  39. M.J. Kamlet, J.L. Abboud, R.W. Taft, The solvatochromic comparison method 6 The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977). https://doi.org/10.1021/ja00460a031

    Article  Google Scholar 

  40. C. Lerf, P. Suppan, Hydrogen bonding and dielectric effects in solvatochromic shifts. J. Chem Soc. Faraday Trans. 88, 963–969 (1992). https://doi.org/10.1039/FT9928800963

    Article  Google Scholar 

  41. A. Hensler, M. von Raumer, P. Suppan, Observation of dielectric enrichment upon the formation of benzophenone radical anion in a binary solvent mixture. J. Chem. Soc. Faraday Trans. 92, 391–393 (1996). https://doi.org/10.1039/FT9969200391

    Article  Google Scholar 

  42. S.-P. Van, G.S. Hammond, Amine quenching of aromatic fluorescence and fluorescent exciplexes. J. Am. Chem. Soc. 100, 3895–3902 (1978). https://doi.org/10.1021/ja00480a039

    Article  Google Scholar 

  43. R. Papadakis, I. Deligkiozi, K.E. Novak, Study of the preferential solvation effects in binary solvent mixtures with the use of intensely solvatochromic azobenzene involving [2]rotaxane solutes. J. Mol. Liq. 274, 715–723 (2019). https://doi.org/10.1021/ja00480a039

    Article  Google Scholar 

  44. P.K. Malik, M. Tripathy, A.B. Kajjam, S. Patel, Preferential solvation of p-nitroaniline in a binary mixture of chloroform and hydrogen bond acceptor solvents: the role of specific solute-solvent hydrogen bonding. Phys. Chem. Chem. Phys. 22, 3545–3562 (2020). https://doi.org/10.1039/C9CP05772B

    Article  Google Scholar 

  45. M. Rosés, C. Ràfols, J. Ortega, E. Bosch, Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation model for describing ET(30) polarity of dipolar hydrogen bond acceptor-cosolvent mixtures. J. Chem Soc. Perkin Trans 2(1995), 1607–1615 (1995). https://doi.org/10.1039/P29950001607

    Article  Google Scholar 

  46. E. Bosch, M. Rosés, K. Herodes, I. Koppel, I. Leito, I. Koppel, V. Taal, Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 2. Effect of temperature on the ET(30) polarity parameter of dipolar hydrogen bond acceptor-hydrogen bond donor mixtures. J. Phys. Org. Chem. 9, 403–410 (1996). https://doi.org/10.1002/(SICI)1099-1395(199606)9:6%3c403::AID-POC799%3e3.0.CO;2-D

    Article  Google Scholar 

  47. J. Ortega, C. Ràfols, E. Bosch, M. Rosés, Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 3. The ET(30) polarity of binary mixtures of hydroxylic solvents. J. Chem. Soc. Perkins Trans. 2(1996), 1497–1503 (1996). https://doi.org/10.1039/P29960001497

    Article  Google Scholar 

  48. R.D. Skwierczynski, K.A. Connors, Solvent effects on chemical processes. Part 7. Quantitative description of the composition dependence of the solvent polarity measure ET(30) in binary aqueous-organic solvent mixtures. J. Chem Soc. Perkin Trans 2(1994), 467–472 (1994). https://doi.org/10.1039/P29940000467

    Article  Google Scholar 

  49. T. Sato, A. Chiba, R. Nozaki, Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy and entropy of the dielectric relaxation process. J. Chem. Phys. 110, 2508–2521 (1999). https://doi.org/10.1063/1.477956

    Article  ADS  Google Scholar 

Download references

Funding

The study is funded by Romanian Ministry of Research, Innovation and Digitization (11PFE/30.12.2021).

Author information

Authors and Affiliations

Authors

Contributions

The authors have equally contributed to all activities related to this article.

Corresponding author

Correspondence to Dan G. Dimitriu.

Ethics declarations

Conflict of interest

Authors are thankful to Romanian Ministry of Research, Innovation and Digitization, within Program 1—Development of the national RD system, Subprogram 1.2—Institutional Performance—RDI excellence funding projects, Contract No. 11PFE/30.12.2021, for the financial support.

Additional information

S.I. : IMA10—Interfacial Fluid Dynamics and Processes. Guest editors: Rodica Borcia, Sebastian Popescu, and Ion Dan Borcia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavel, C.M., Ambrosi, E., Dimitriu, D.G. et al. Complex formation and microheterogeneity in water–alcohol binary mixtures investigated by solvatochromic study. Eur. Phys. J. Spec. Top. 232, 415–425 (2023). https://doi.org/10.1140/epjs/s11734-023-00785-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00785-w

Navigation