Skip to main content
Log in

Shaping spiking patterns through synaptic parameters as revealed by conventional and wavelet-based bifurcation analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate different dynamical regimes of a small neuronal circuit. This circuit includes two cells that are interconnected by means of dynamical synapses (excitatory and inhibitory). On the individual level, each neuron is modelled by FitzHugh–Nagumo equations. To analyze complex patterns and transitions between them in this small circuit, we apply wavelet analysis. We analyse the influence of synaptic kinetics on the synchronization in this circuit. We also show that the wavelet analysis could be applicable to systems that are difficult to investigate using methods of classical bifurcation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004). https://doi.org/10.1126/science.1099745

    Article  ADS  Google Scholar 

  2. S. Grillner, H. Markram, E. De Schutter, G. Silberberg, F.E.N. LeBeau, Microcircuits in action-from CPGs to neocortex. Trends Neurosci. 28, 525–533 (2005). https://doi.org/10.1016/j.tins.2005.08.003

    Article  Google Scholar 

  3. P. Sauseng, W. Klimesch, What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci. Biobehav. Rev. 32, 1001–1013 (2008). https://doi.org/10.1016/j.neubiorev.2008.03.014

    Article  Google Scholar 

  4. J.B. Caplan, J.R. Madsen, S. Raghavachari, M.J. Kahana, Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. J. Neurophysiol. 86, 368–380 (2001). https://doi.org/10.1152/jn.2001.86.1.368

    Article  Google Scholar 

  5. M. Garcia-Munoz, L. Carrillo-Reid, G.W. Arbuthnott, Functional anatomy: dynamic states in basal ganglia circuits. Front. Neuroanat. 4, 144 (2010). https://doi.org/10.3389/fnana.2010.0014

    Article  Google Scholar 

  6. A.K. Engel, C. Gerloff, C.C. Hilgetag, G. Nolte, Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80, 867–886 (2013). https://doi.org/10.1016/j.neuron.2013.09.038

    Article  Google Scholar 

  7. M.J. Kahana, The cognitive correlates of human brain oscillations. J. Neurosci. 26, 1669–1672 (2006). https://doi.org/10.1523/JNEUROSCI.3737-05c.2006

    Article  Google Scholar 

  8. G. Buzsáki, Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010). https://doi.org/10.1016/j.neuron.2010.09.023

    Article  Google Scholar 

  9. A. Szücs, F. Berton, T. Nowotny, P. Sanna, W. Francesconi, Consistency and diversity of spike dynamics in the neurons of bed nucleus of stria terminalis of the rat: a dynamic clamp study. PLoS ONE 5, 11920 (2010). https://doi.org/10.1371/journal.pone.0011920

    Article  ADS  Google Scholar 

  10. C.T. Dickson, Ups and downs in the hippocampus: the influence of oscillatory sleep states on “neuroplasticity’’ at different time scales. Behav. Brain Res. 214, 35–41 (2010). https://doi.org/10.1016/j.bbr.2010.04.002

    Article  Google Scholar 

  11. T. Gloveli, T. Dugladze, H.G. Rotstein, R.D. Traub, H. Monyer, U. Heinemann, M.A. Whittington, N.J. Kopell, Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 13295–13300 (2005). https://doi.org/10.1073/pnas.0506259102

    Article  ADS  Google Scholar 

  12. O. Sporns, G. Tononi, G.M. Edelman, Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13, 909–922 (2000). https://doi.org/10.1016/S0893-6080(00)00053-8

    Article  Google Scholar 

  13. S.T. Alford, M.H. Alpert, A synaptic mechanism for network synchrony. Front. Cell. Neurosci. 8, 290 (2014). https://doi.org/10.3389/fncel.2014.00290

    Article  Google Scholar 

  14. A.I. Lavrova, M.A. Zaks, L. Schimansky-Geier, Modeling rhythmic patterns in the hippocampus. Phys. Rev. E 85, 041922 (2012). https://doi.org/10.1103/PhysRevE.85.041922

    Article  ADS  Google Scholar 

  15. N. Brunel, X.-J. Wang, What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003). https://doi.org/10.1152/jn.01095.2002

    Article  Google Scholar 

  16. R. Cossart, Z. Petanjek, D. Dumitriu, J.C. Hirsch, Y. Ben-Ari, M. Esclapez, C. Bernard, Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus 16, 408–420 (2006). https://doi.org/10.1002/hipo.20169

    Article  Google Scholar 

  17. L. Wang, S.T. Kitai, Z. Xiang, Activity-dependent bidirectional modification of inhibitory synaptic transmission in rat subthalamic neurons. J. Neurosci. 26, 7321–7327 (2006). https://doi.org/10.1523/JNEUROSCI.4656-05.2006

    Article  Google Scholar 

  18. Z. Wang, H. Fan, F. Han, A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory-inhibitory networks. Cogn. Neurodyn. 8, 335–344 (2014). https://doi.org/10.1007/s11571-014-9290-4

    Article  Google Scholar 

  19. S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way (Academic Press, Burlington, 2009). https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

    Book  MATH  Google Scholar 

  20. P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315372556

    Book  MATH  Google Scholar 

  21. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, V.A. Maximenko, A.N. Pavlov, E. Sitnikova, Wavelets in Neuroscience (Springer, Berlin–Heidelberg, 2021). https://doi.org/10.1007/978-3-030-75992-6

    Book  MATH  Google Scholar 

  22. R. Benítez, V.J. Bolós, M.E. Ramírez, A wavelet-based tool for studying non-periodicity. Comput. Math. Appl. 60, 634–641 (2010). https://doi.org/10.1016/j.camwa.2010.05.010

    Article  MathSciNet  MATH  Google Scholar 

  23. J.C. Foo, H.R. Noori, I. Yamaguchi, V. Vengeliene, A. Cosa-Linan, T. Nakamura, K. Morita, R. Spanagel, Y. Yamamoto, Dynamical state transitions into addictive behaviour and their early-warning signals. Proc. Roy. Soc. B Biol. Sci. 284, 20170882 (2017). https://doi.org/10.1098/rspb.2017.0882

    Article  Google Scholar 

  24. V.A. Maksimenko, A.E. Runnova, M.O. Zhuravlev, V.V. Makarov, V. Nedayvozov, V.V. Grubov, S.V. Pchelintceva, A.E. Hramov, A.N. Pisarchik, Visual perception affected by motivation and alertness controlled by a noninvasive brain–computer interface. PLoS ONE 12, 0188700 (2017). https://doi.org/10.1371/journal.pone.0188700

    Article  Google Scholar 

  25. E.B. Postnikov, A.I. Lavrova, R.V. Kiseliov, T.Y. Plyusnina, Wavelet bifurcation analysis of dynamical systems: a case study in oscillations of Chara corallina transmembrane potential. Int. J. Bifurc. Chaos 22, 1250293 (2012). https://doi.org/10.1142/S0218127412502938

    Article  MathSciNet  MATH  Google Scholar 

  26. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1, 445–466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6

    Article  Google Scholar 

  27. V. Cutsuridis, B. Graham, S. Cobb, I. Vida (eds.) Hippocampal Microcircuits: A Computational Modeler’s Resource Book (Springer, New York, 2010). https://doi.org/10.1007/978-1-4419-0996-1

  28. A.A. Andronov, Les cycles limites de Poicaré et la théorie des oscillations auto-entrenues. CR Acad. Sci. Paris 189, 559–561 (1929)

    Google Scholar 

  29. E.B. Postnikov, Wavelet phase synchronization and chaoticity. Phys. Rev. E 80, 057201 (2009). https://doi.org/10.1103/PhysRevE.80.057201

    Article  ADS  Google Scholar 

  30. E.A. Lebedeva, E.B. Postnikov, On alternative wavelet reconstruction formula: a case study of approximate wavelets. Roy. Soc. Open Sci. 1, 140124 (2014). https://doi.org/10.1098/rsos.140124

    Article  ADS  Google Scholar 

  31. E.B. Postnikov, E.A. Lebedeva, A.I. Lavrova, Computational implementation of the inverse continuous wavelet transform without a requirement of the admissibility condition. Appl. Math. Comput. 282, 128–136 (2016). https://doi.org/10.1016/j.amc.2016.02.013

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Gabor, Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng.-Part III Radio Commun. Eng. 93, 429–441 (1946). https://doi.org/10.1049/ji-3-2.1946.0074

    Article  Google Scholar 

  33. M. Duval-Destin, M.A. Muschietti, B. Torrésani, Continuous wavelet decompositions, multiresolution, and contrast analysis. SIAM J. Math. Anal. 24, 739–755 (1993). https://doi.org/10.1137/0524045

    Article  MathSciNet  MATH  Google Scholar 

  34. E.B. Postnikov, M.O. Tsoy, M.A. Kurochkin, D.E. Postnov, A fast method for the detection of vascular structure in images, based on the continuous wavelet transform with the Morlet wavelet having a low central frequency. Proc. SPIE 10337, 103370 (2017). https://doi.org/10.1117/12.2268427

    Article  Google Scholar 

  35. O.V. Sosnovtseva, A.N. Pavlov, E. Mosekilde, N.-H. Holstein-Rathlou, D.J. Marsh, Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E 70(3), 031915 (2004). https://doi.org/10.1103/PhysRevE.70.031915

    Article  ADS  Google Scholar 

  36. O.V. Sosnovtseva, A.N. Pavlov, E. Mosekilde, N.-H. Holstein-Rathlou, D.J. Marsh, Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. Physiol. Meas. 26, 351 (2005). https://doi.org/10.1088/0967-3334/26/4/002

    Article  Google Scholar 

  37. L.L. Colgin, Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 31, 45–50 (2015). https://doi.org/10.1016/j.conb.2014.08.001

    Article  Google Scholar 

  38. P. Sauseng, C. Peylo, A.L. Biel, E.V.C. Friedrich, C. Romberg-Taylor, Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? Br. J. Psychol. 110, 245–255 (2019). https://doi.org/10.1111/bjop.12340

    Article  Google Scholar 

  39. I. Mysin, L. Shubina, From mechanisms to functions: the role of theta and gamma coherence in the intrahippocampal circuits. Hippocampus 32, 342–358 (2022). https://doi.org/10.1002/hipo.23410

    Article  Google Scholar 

  40. Y. Yang, H. Gritton, M. Sarter, S.J. Aton, V. Booth, M. Zochowski, Theta-gamma coupling emerges from spatially heterogeneous cholinergic neuromodulation. PLoS Comput. Biol. 17, 1009235 (2021). https://doi.org/10.1371/journal.pcbi.1009235

    Article  ADS  Google Scholar 

  41. H. Noyama, Y. Yoshikai, K. Kotani, Y. Jimbo, Mathematical analysis of multiple spike time series synchronized in phase with collective theta wave using neural cell model. Electron. Commun. Jpn. 104, 95–102 (2021). https://doi.org/10.1002/ecj.12294

    Article  Google Scholar 

  42. Q. Moreau, L. Adel, C. Douglas, G. Ranjbaran, G. Dumas, A neurodynamic model of inter-brain coupling in the gamma band. J. Neurophysiol. (2022). https://doi.org/10.1152/jn.00224.2022

    Article  Google Scholar 

  43. S.Y. Makovkin, I.V. Shkerin, S.Y. Gordleeva, M.V. Ivanchenko, Astrocyte-induced intermittent synchronization of neurons in a minimal network. Chaos Solitons Fractals 138, 109951 (2020). https://doi.org/10.1016/j.chaos.2020.109951

    Article  MathSciNet  Google Scholar 

  44. A.G. Flesia, P.S. Nieto, M.A. Aon, J.M. Kembro, Computational approaches and tools as applied to the study of rhythms and chaos in biology. In: Computational Systems Biology in Medicine and Biotechnology. Methods and Protocols (Humana, New York, NY, 2022). pp. 277–341. https://doi.org/10.1007/978-1-0716-1831-8_13

  45. M. Vaghefi, A.M. Nasrabadi, S.M.R.H. Golpayegani, M.R. Mohammadi, S. Gharibzadeh, Identification of chaos-periodic transitions, band merging, and internal crisis using wavelet-DFA method. Int. J. Bifurc. Chaos 26, 1650065 (2016). https://doi.org/10.1142/S0218127416500656

    Article  MathSciNet  MATH  Google Scholar 

  46. A.N. Pavlov, O.N. Pavlova, O.V. Semyachkina-Glushkovskaya, J. Kurths, Enhanced multiresolution wavelet analysis of complex dynamics in nonlinear systems. Chaos 31, 043110 (2021). https://doi.org/10.1063/5.0045859

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. G. Bonciolini, D. Ebi, E. Boujo, N. Noiray, Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation. Roy. Soc. Open Sci. 5, 172078 (2018). https://doi.org/10.1098/rsos.172078

    Article  ADS  Google Scholar 

  48. Y. Yu, Z. Zhang, X. Han, Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system. Commun. Nonlinear Sci. Numer. Simul. 56, 380–391 (2018). https://doi.org/10.1016/j.cnsns.2017.08.019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. I. Pavithran, R.I. Sujith, Effect of rate of change of parameter on early warning signals for critical transitions. Chaos Interdiscipl. J. Nonlinear Sci. 31, 013116 (2021). https://doi.org/10.1063/5.0025533

    Article  Google Scholar 

  50. T.M. Bury, R.I. Sujith, I. Pavithran, M. Scheffer, T.M. Lenton, M. Anand, C.T. Bauch, Deep learning for early warning signals of tipping points. Proc. Natl. Acad. Sci. USA 118, 2106140118 (2021). https://doi.org/10.1073/pnas.2106140118

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AIL was supported by the Project of the state assign of the Ministry of Education and Science of the Russian Federation No. 75-02-2022-872

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia I. Lavrova.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

S.I. : Brain Physiology Meets Complex Systems. Guest editors: Thomas Penzel, Teemu Myllylä, Oxana V. Semyachkina-Glushkovskaya, Alexey Pavlov, Anatoly Karavaev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogonasheva, O., Postnikov, E.B. & Lavrova, A.I. Shaping spiking patterns through synaptic parameters as revealed by conventional and wavelet-based bifurcation analysis. Eur. Phys. J. Spec. Top. 232, 485–497 (2023). https://doi.org/10.1140/epjs/s11734-023-00781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00781-0

Navigation